如圖,拋物線(xiàn)y=ax2-2ax-3a(a<0),與x軸的交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過(guò)點(diǎn)C、①求拋物線(xiàn)的解析式;
②如圖,點(diǎn)E是y軸負(fù)半軸上的一點(diǎn),連結(jié)BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線(xiàn)上,作MF⊥x軸于點(diǎn)F,若線(xiàn)段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線(xiàn)的對(duì)稱(chēng)軸上,以Q為圓心的圓過(guò)A、B兩點(diǎn),并且和直線(xiàn)CD相切,如圖,求點(diǎn)Q的坐標(biāo).
解:(1) ∴ 2分 (2)①令,則 ∵點(diǎn)A在點(diǎn)B的右側(cè) ∴ 令,則 ∴ 作于點(diǎn)E ∵AD是直徑 ∴∠ACD=90°∴∠OCA+∠ECD=90° 又∵∠EDC+∠ECD=90° ∴∠EDC=∠OCA, 又∵∠DEC=∠COA=90°∴△DEC∽△COA ∴即 a2=1 ∵ ∴a=-1 ∴ 5分 、凇摺OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN, 且△OBE是直角三角形 ∴PM∥,PN∥ 設(shè) 則, ∵MF:BF=1:2 ∴ ∴ 8分 ∵旋轉(zhuǎn),∴, ∴, ∴ 10分 ③∵在對(duì)稱(chēng)軸上,設(shè), 對(duì)稱(chēng)軸與軸交于點(diǎn),圓半徑為 ∵△CDE中,∠DEC=90°,DE=CE=1 ∴△CDE是等腰直角三角形,即∠EDC=45°, ∴∠ODC=45° 設(shè)直線(xiàn)CD切圓Q于點(diǎn)H, 則△ODH也是等腰直角三角形 ∴,即 在 ∴ 14分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2008年江西省南昌市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P,且與拋物線(xiàn)y2=ax2-ax-1,相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值?其最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分8分)如圖,拋物線(xiàn)y=ax-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過(guò)點(diǎn)C(5,4).該拋物線(xiàn)頂點(diǎn)為P.
1.⑴求a的值和該拋物線(xiàn)頂點(diǎn)P的坐標(biāo).
2.⑵求DPAB的面積;
3.⑶若將該拋物線(xiàn)先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省興化市九年級(jí)上學(xué)期期末四校聯(lián)考數(shù)學(xué)卷 題型:解答題
(本題滿(mǎn)分8分)如圖,拋物線(xiàn)y=ax-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過(guò)點(diǎn)C(5,4).該拋物線(xiàn)頂點(diǎn)為P.
【小題1】⑴求a的值和該拋物線(xiàn)頂點(diǎn)P的坐標(biāo).
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線(xiàn)先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省興化市九年級(jí)上學(xué)期期末四校聯(lián)考數(shù)學(xué)卷 題型:解答題
(本題滿(mǎn)分8分)如圖,拋物線(xiàn)y=ax-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過(guò)點(diǎn)C(5,4).該拋物線(xiàn)頂點(diǎn)為P.
1.⑴求a的值和該拋物線(xiàn)頂點(diǎn)P的坐標(biāo).
2.⑵求DPAB的面積;
3.⑶若將該拋物線(xiàn)先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線(xiàn)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com