如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,則的值為( 。
| A. | B. |
| C. | D. |
|
考點(diǎn):
矩形的性質(zhì);翻折變換(折疊問題).
分析:
根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對(duì)邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DAC=∠BAC,從而得到∠EAC=∠DAC,設(shè)AE與CD相交于F,根據(jù)等角對(duì)等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出=,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對(duì)邊相等求出AB,然后代入進(jìn)行計(jì)算即可得解.
解答:
解:∵矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的對(duì)邊AB∥CD,
∴∠DAC=∠BAC,
∴∠EAC=∠DAC,
設(shè)AE與CD相交于F,則AF=CF,
∴AE﹣AF=CD﹣CF,
即DF=EF,
∴=,
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
∴==,
設(shè)DF=3x,F(xiàn)C=5x,則AF=5x,
在Rt△ADF中,AD===4x,
又∵AB=CD=DF+FC=3x+5x=8x,
∴==.
故選A.
點(diǎn)評(píng):
本題考查了矩形的性質(zhì),平行線的性質(zhì),等角對(duì)等邊的性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,綜合性較強(qiáng),但難度不大,熟記各性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BDC |
BF |
AD |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047
如圖,已知四邊形AB∥CD是菱形,DE⊥AB,DF⊥BC.求證△ADE≌△CDF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com