【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為

【答案】25:9
【解析】解:過(guò)A作AD⊥BC于D,過(guò)A′作A′D′⊥B′C′于D′,
∵△ABC與△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,
∴AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵SBAC= ADBC= ABsinB2ABcosB=25sinBcosB,
SA′B′C′= A′D′B′C′= A′B′cosB′2A′B′sinB′=9sinB′cosB′,
∴SBAC:SA′B′C′=25:9,
故答案為:25:9.
先根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,∠B′=∠C′,根據(jù)三角函數(shù)的定義得到AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,然后根據(jù)三角形面積公式即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長(zhǎng)線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過(guò)C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長(zhǎng)線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫(xiě)作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長(zhǎng)AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車(chē)去學(xué)校,乙同學(xué)騎自行車(chē)去學(xué)校.已知甲步行速度是乙騎自行車(chē)速度的,公交車(chē)的速度是乙騎自行車(chē)速度的2倍.甲乙兩同學(xué)同時(shí)從家出發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.乙騎自行車(chē)的速度是( 。┟/分.

A. 600 B. 400 C. 300 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:

組號(hào)

分組

頻數(shù)

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形圖來(lái)描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角大;
(3)將在第一組內(nèi)的兩名選手記為:A1、A2 , 在第四組內(nèi)的兩名選手記為:B1、B2 , 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹(shù)狀圖或列表法列出所有可能結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(3)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷(xiāo)售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷(xiāo)售量為p(單位:件),每天的銷(xiāo)售利潤(rùn)為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷(xiāo)售量p(件)

198

140

80

20


(1)求出w與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?并求出最大利潤(rùn);
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于5600元?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C=90°,點(diǎn)PAC邊上的一點(diǎn),延長(zhǎng)BP至點(diǎn)D,使得AD=AP,當(dāng)ADAB時(shí),過(guò)DDEACE,AB-BC=4,AC=8,則△ABP面積為____.

查看答案和解析>>

同步練習(xí)冊(cè)答案