【題目】如圖1,在菱形ABCD中,AB=2,BAD=60°,過點DDEABE,DFBC于點F.將∠EDF繞點D順時針旋轉α°(0<α<180),其兩邊的對應邊DE′、DF′分別與直線AB、BC相交于點G、P,如圖2.連接GP,當DGP的面積等于3時,則α的大小為( 。

A. 30 B. 45 C. 60 D. 120

【答案】C

【解析】分析題目根據(jù)ABDC,BAD=60°,可得∠ADC的度數(shù);

利用∠ADE=CDF=30°,可得∠EDF的度數(shù),當∠EDF順時針旋轉時,由旋轉的性質可知:∠EDG=FDP,GDP=EDF=60°,根據(jù)全等三角形的判定方法證明DEG≌△DFP;

然后全等三角形的性質可得DG=DP,即可得出DGP為等邊三角形,利用面積和cosEDG可得∠EDG的度數(shù),同理可得結論.

ABDC,BAD=60°,

∴∠ADC=120°,又∠ADE=CDF=30°,

∴∠EDF=60°,

由旋轉的性質可知,∠EDG=FDP,GDP=EDF=60°,

DE=DF=DEG=DFP=90°,

DEGDFP中,

,

∴△DEG≌△DFP,

DG=DP,

∴△DGP為等邊三角形,

∴△DGP的面積=DG2=3,

解得,DG=2,

cosEDG==,

∴∠EDG=60°,

∴當順時針旋轉60°時,DGP的面積等于3,

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為迎接體育中考,了解學生的體育情況,學校隨機調查了本校九年級50名學生“30秒跳繩”的次數(shù),并將調查所得的數(shù)據(jù)整理如下:

成績段

頻數(shù)

頻率

0≤x<20

5

0.1

20≤x<40

10

a

40≤x<60

b

0.14

60≤x<80

m

c

80≤x<100

12

n

根據(jù)以上圖表信息,解答下列問題:

(1)表中的a= ,m= ;

(2)請把頻數(shù)分布直方圖補充完整;(畫圖后請標注相應的數(shù)據(jù))

(3)若該校九年級共有600名學生,請你估計“30秒跳繩”的次數(shù)60次以上(含60次)的學生有多人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,分別在直線,上,點在直線,之間,

1)如圖1,求證:;

2)如圖2,過點,點上,,求證:;

3)在(2)的條件下,如圖3,過點的垂線交于點,的平分線交于點,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE,點EBC上.過點DDFBC,連接DB.

求證:(1)ABD≌△ACE;

(2)DF=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,是直角,的外側,且,的平分線,的平分線.

1)求的大小;

2)當銳角的大小為時,試猜想(1)中的大小是否發(fā)生改變?并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1個單位長度的正方形網格中建立如圖所示的平面直角坐標系,ABC的頂點都在格點上,請解答下列問題

1)畫出將ABC向左平移4個單位長度后得到的圖形A1B1C1,并寫出點C1的坐標;

2)畫出將ABC關于原點O對稱的圖形A2B2C2,并寫出點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點CD是線段AB同側兩點,且ACBD,∠CAB=∠DBA,連接BC,AD交于點 E

1)求證:AEBE;

2)如圖2,△ABF與△ABD關于直線AB對稱,連接EF

判斷四邊形ACBF的形狀,并說明理由;

若∠DAB30°,AE5,DE3,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,DBC的中點,EAD的中點,過點AAFBCBE的延長線于點F.

1)求證:△AEF≌△DEB;

2)求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年小張前五個月的獎金變化情況如下表(正數(shù)表示比前一月多的錢數(shù),負數(shù)表示比前一月少的錢數(shù),單位:元)

月份

一月

二月

三月

四月

五月

錢數(shù)變化

201812月份小張的獎金為.

1)用代數(shù)式表示2019年二月份小張的獎金為___________元;

2)小張五月份所得獎金比二月份多多少?

查看答案和解析>>

同步練習冊答案