【題目】下列命題中,是真命題的是(

①面積相等的兩個(gè)直角三角形全等;

②對(duì)角線互相垂直的四邊形是正方形;

③將拋物線 向左平移4個(gè)單位,再向上平移1個(gè)單位可得到拋物線 ;

④兩圓的半徑R、r分別是方程x2-3x+2=0 的兩根,且圓心距d=3則兩圓外切.

A. B. C. D.

【答案】D

【解析】試題解析:①面積相等的兩個(gè)直角三角形不一定全等,原命題是假命題;
②對(duì)角線互相垂直的四邊形不一定是正方形,原命題是假命題;
③將拋物線y=2x2向左平移4個(gè)單位,再向上平移1個(gè)單位可得到拋物線y=2(x+4)2+1,原命題是假命題;
④兩圓的半徑R、r分別是方程x2-3x+2=0的兩根,且圓心距d=3,則兩圓外切,是真命題;
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(聊城臨清市期末)如圖,四邊形ABCD中,ABCD,對(duì)角線AC,BD交于點(diǎn)O,下列條件中不能說明四邊形ABCD是平行四邊形的是(  )

A. ADBC B. ACBD

C. ABCD D. BACDCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,OAC的中點(diǎn),AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)某班級(jí)部分同學(xué)去植樹,若每人平均植樹7棵,還剩9棵,若每人平均植樹9棵,則有1位同學(xué)植樹的棵數(shù)不到8棵.若設(shè)同學(xué)人數(shù)為x人,植樹的棵數(shù)為(7x+9)棵,下列各項(xiàng)能準(zhǔn)確的求出同學(xué)人數(shù)與種植的樹木的數(shù)量的是(  )

A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.
(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長(zhǎng)為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(  )

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于點(diǎn)F,連接DF.

(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;

(2)若AB∥CD,試證明四邊形ABCD是菱形;

(3)在(2)的條件下,試確定E點(diǎn)的位置,使∠EFD=∠BCD,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為(

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于點(diǎn)F,連接DF.

(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;

(2)若AB∥CD,試證明四邊形ABCD是菱形;

(3)在(2)的條件下,試確定E點(diǎn)的位置,使∠EFD=∠BCD,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案