(2002•黑龍江)哈爾濱市政府為了申辦2010年冬奧委,決定改善城市容貌,綠化環(huán)境,計(jì)劃經(jīng)過兩年時(shí)間,希望綠地面積可以增加44%,這兩年平均每年綠地面積的增長率是( )
A.19%
B.20%
C.21%
D.22%
【答案】分析:增長率問題,一般用增長后的量=增長前的量×(1+增長率),本題可參照增長率問題求解.設(shè)這兩年平均每年綠地面積的增長率是x,因?yàn)樵鲩L了2次,所以(1+x)2=1+44%,解這個(gè)方程即可求解.
解答:解:設(shè)這兩年平均每年綠地面積的增長率是x,則(1+x)2=1+44%,
解之得x=0.2或-2.2(舍去)
即x=20%.
答:這兩年平均每年綠地面積的增長率是20%.
故選B.
點(diǎn)評(píng):本題考查求平均變化率的方法.掌握求增長率的等量關(guān)系:增長后的量=(1+增長率)增長的次數(shù)×增長前的量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•黑龍江)如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點(diǎn),OA、OB的長分別是關(guān)于x的方程x2-14x+4(AB+2)=0的兩個(gè)根(OB>OA),P是直線l上A、B兩點(diǎn)之間的一動(dòng)點(diǎn)(不與A、B重合),PQ∥OB交OA于點(diǎn)Q.
(1)求tan∠BAO的值;
(2)若S△PAQ=S四邊形OQPB時(shí),請確定點(diǎn)P在AB上的位置,并求出線段PQ的長;
(3)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2002•黑龍江)某一次函數(shù)的圖象經(jīng)過點(diǎn)(-1,2),且函數(shù)y的值隨自變量x的增大而減少,請寫出一個(gè)符合上述條件的函數(shù)關(guān)系式:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市順義區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2002•黑龍江)某一次函數(shù)的圖象經(jīng)過點(diǎn)(-1,2),且函數(shù)y的值隨自變量x的增大而減少,請寫出一個(gè)符合上述條件的函數(shù)關(guān)系式:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•黑龍江)某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程,開始時(shí)風(fēng)暴平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減小1千米/時(shí),最終停止.結(jié)合風(fēng)速與時(shí)間的圖象,回答下列問題:
(1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時(shí)?
(3)求出當(dāng)x≥25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;
(4)若風(fēng)速達(dá)到或超過20千米/時(shí),稱為強(qiáng)沙塵暴,則強(qiáng)沙塵暴持續(xù)多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•黑龍江)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過(-4,0),(2,6),則這個(gè)二次函數(shù)的解析式為   

查看答案和解析>>

同步練習(xí)冊答案