18、已知:三點(diǎn)A(-2,-1)、B(4,-1)、C(2,3).在坐標(biāo)平面內(nèi)畫(huà)出以這三個(gè)點(diǎn)為頂點(diǎn)的平行四邊形,并寫(xiě)出第四個(gè)頂點(diǎn)的坐標(biāo).
分析:分別以AB、BC、AC為平行四邊形的對(duì)角線畫(huà)平行四邊形,所得到的平行四邊形有3個(gè),故所求第四個(gè)頂點(diǎn)坐標(biāo)有3個(gè).
解答:解:如圖所示,可以畫(huà)出三個(gè)平行四邊形,
即平行四邊形ABD1C,平行四邊形ABD2C,平行四邊形ABD3C,
由平行四邊形的性質(zhì)可推出第四個(gè)頂點(diǎn)坐標(biāo)為:D1(8,3),D2(0,-5),D3(-4,3).
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì),分類討論的思想,要學(xué)會(huì)分類方法,形數(shù)結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在方格紙中建立平面直角坐標(biāo)系,已知△ABC三點(diǎn)坐標(biāo)分別是:點(diǎn)A(-2,0),點(diǎn)B(4,8),點(diǎn)C(3,2).

(1)在方格紙中畫(huà)出△ABC.
(2)將△ABC向右平移兩個(gè)單位,作出平移后的△A′B′C′.
(3)寫(xiě)出兩條反映△ABC與△A′B′C′之間關(guān)系的性質(zhì),例如:“△ABC與△A′B′C′的對(duì)應(yīng)角相等.”
△ABC與△A′B′C′對(duì)應(yīng)邊相等

AA′與BB′平行且相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:三點(diǎn)A(-1,1),B(-3,2),C(-4,-1).
(1)作出與△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1,并寫(xiě)出各頂點(diǎn)的坐標(biāo);
(2)作出與△ABC關(guān)于P(1,-2)點(diǎn)對(duì)稱的△A2B2C2,并寫(xiě)出各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:三點(diǎn)A(a,1)、B(3,1)、C(6,0),點(diǎn)A在正比例函數(shù)y=
12
x的圖象上.
(1)求a的值;
(2)點(diǎn)P為x軸上一動(dòng)點(diǎn).當(dāng)△OAP與△CBP周長(zhǎng)的和取得最小值時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:三點(diǎn)坐標(biāo)為A(5,-1),B(-2,3),C(3,1),△ABC內(nèi)任意一點(diǎn)P(x,y)經(jīng)過(guò)平移后,P點(diǎn)對(duì)應(yīng)P′的坐標(biāo)為(x+2,y-4),那么平移后所得△A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案