已知拋物線y=x2+3x與x軸交于A、B兩點,在x軸上方的拋物線上存在一點P,使△PAB的面積等于3,
(1)求A、B兩點的坐標;
(2)求出點P的坐標.
分析:(1)令y=0,則x2+3x=0,通過解該方程即可求得點A、B的橫坐標;
(3)設(shè)P(x,x2+3x).根據(jù)三角形的面積公式列出關(guān)于x的方程,通過解方程可以求得x的值.
解答:解:(1)令y=0,則x2+3x=0.
所以x(x+3)=0,
解得x1=0,x2=-3,
故A(0,0),B(-3,0);

(2)設(shè)P(x,x2+3x)(-3<x<0).則
1
2
AB•|x2+3x|=3,即
1
2
×3×|x2+3x|=3,
所以x2+3x-2=0,
解得x=
-3+
17
2
或x=
-3-
17
2
(不合題意,舍去).
故點P的坐標是(
-3+
17
2
,2).
點評:本題考查了拋物線與x軸的交點.求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標,令y=0,即ax2+bx+c=0,解關(guān)于x的一元二次方程即可求得交點橫坐標.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習冊答案