如圖,⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線y=ax2+bx經(jīng)過點A(4,0)與點(-2,6).

(1)求拋物線的函數(shù)解析式;
(2)直線m與⊙C相切于點A交y軸于點D,動點P在線段OB上,從點O出發(fā)向點B運動;同時動點Q在線段DA上,從點D出發(fā)向點A運動,點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長,當PQ⊥AD時,求運動時間t的值;
(3)點R在拋物線位于x軸下方部分的圖象上,當△ROB面積最大時,求點R的坐標.
(1)y=x2-2x;(2)1.8;(3)(,

試題分析:(1)由拋物線y=ax2+bx經(jīng)過點A(4,0)與點(-2,6)即可根據(jù)待定系數(shù)法求解;
(2)過點O作OF⊥AD,連接AC交OB于點E,由垂徑定理得AC⊥OB.根據(jù)切線的性質(zhì)可得AC⊥AD,即可證得四邊形OFAE是矩形,由tan∠AOB=可得sin∠AOB=,即可求得AE、OD的長,當PQ⊥AD時,OP=t,DQ=2t.則在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ-FQ=DQ-OP=2t-t=t,再根據(jù)勾股定理求解;
(3)設直線l平行于OB,且與拋物線有唯一交點R(相切),此時△ROB中OB邊上的高最大,所以此時△ROB面積最大,由tan∠AOB=可得直線OB的解析式為y=x,由直線l平行于OB,可設直線l解析式為y=x+b.點R既在直線l上,又在拋物線上,可得x2-2x=x+b,再根據(jù)直線l與拋物線有唯一交點R(相切),可得方程2x2-11x-4b=0有兩個相等的實數(shù)根,即可得到判別式△=0,從而可以求得結(jié)果.
(1)∵拋物線y=ax2+bx經(jīng)過點A(4,0)與點(-2,6),
,解得a=,b=-2
∴拋物線的解析式為:y=x2-2x;
(2)過點O作OF⊥AD,連接AC交OB于點E,由垂徑定理得AC⊥OB.

∵AD為切線,
∴AC⊥AD, 
∴AD∥OB.
∴四邊形OFAE是矩形,
∵tan∠AOB=   
∴sin∠AOB=,
∴AE=OA·sin∠AOB=4×=2.4,
OD=OA·tan∠OAD=OA·tan∠AOB=4×=3.
當PQ⊥AD時,OP=t,DQ=2t.
則在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ-FQ=DQ-OP=2t-t=t,
由勾股定理得:DF=,
∴t=1.8秒;
(3)設直線l平行于OB,且與拋物線有唯一交點R(相切),
此時△ROB中OB邊上的高最大,所以此時△ROB面積最大.  
∵tan∠AOB=    
∴直線OB的解析式為y=x,
由直線l平行于OB,可設直線l解析式為y=x+b.
∵點R既在直線l上,又在拋物線上,
x2-2x=x+b,化簡得:2x2-11x-4b=0.
∵直線l與拋物線有唯一交點R(相切),
∴方程2x2-11x-4b=0有兩個相等的實數(shù)根
∴判別式△=0,即112+32b=0,解得b=,
此時原方程的解為x=,即xR= ,
而yR=xR2-2xR=
∴點R的坐標為R().
點評:此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點C的坐標為(0,3)它的對稱軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點,當△MBC為等腰三角形時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線)與y軸交于點A,其對稱軸與x軸交于點B。

(1)求點A,B的坐標;
(2)設直線l與直線AB關于該拋物線的對稱軸對稱,求直線l的解析式;
(3)若該拋物線在這一段位于直線l的上方,并且在這一段位于直線AB的下方,求該拋物線的解析式。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.

(1)求該拋物線的解析式;
(2)當動點P運動到何處時,BP2=BD•BC;
(3)當△PCD的面積最大時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直線軸于點,交軸于點,拋物線經(jīng)過、、(1,0)三點.

(1)求拋物線的解析式;
(2)若點的坐標為(-1,0),在直線上有一點,使相似,求出點的坐標;
(3)在(2)的條件下,在軸下方的拋物線上,是否存在點,使的面積等于四邊形的面積?如果存在,請求出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點(-1,-4)且過點(0,-3),直線l是它的對稱軸。

(1)求此拋物線的解析式;
(2)設拋物線交x軸于點A、B(A在B的左邊),交y軸于點C,P為l上的一動點,當△PBC的周長最小時,求P點的坐標。
(3)在直線l上是否存在點M,使△MBC是等腰三角形,若存在,直接寫出符合條件的點M的坐標;若不存在請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

隨著“六一”臨近,兒童禮品開始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價22元,乙禮品每件售價18元,且都能全部售出。
(1)若某月銷售收入2000萬元,則該月甲、乙禮品的產(chǎn)量分別是多少?
(2)如果每月投入的總成本不超過1380萬元,應怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤最大?
(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價每提高1元,銷量會減少4萬件,乙禮品售價不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤,該廠決定提高甲禮品的售價,并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問:提高甲禮品的售價多少元時可獲得最大利潤,最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正確結(jié)論的個數(shù)是(  。
A.1B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖二次函數(shù)的圖象與軸交于(– 1,0),(3,0);下列說法正確的是(    )
A.
B.當時,y隨x值的增大而增大
C.
D.當時,

查看答案和解析>>

同步練習冊答案