計(jì)算下列各式:
(1)
1
a-b
+
1
a+b
+
2a
a2+b2
+
4a3
a4+b4
;
(2)
x2+yz
x2+(y-z)x-yz
+
y2-zx
y2+(z+x)y+zx
+
z2+xy
z2-(x-y)z-xy
;
(3)
x3-1
x3+2x2+2x+1
+
x3+1
x3-2x2+2x-1
-
2(x2+1)
x2-1

(4)
(y-x)(z-x)
(x-2y+z)(x+y-2z)
+
(z-y)(x-y)
(x+y-2z)(y+z-2x)
+
(x-z)(y-z)
(y+z-2x)(x-2y+z)
分析:(1)運(yùn)用平方差公式分步通分;
(2)將各分式拆項(xiàng),再兩兩抵消即可得出結(jié)果;
(3)先將各分式分解因式約分,再通分計(jì)算;
(4)注意到分母與分子的項(xiàng)與項(xiàng)之間的關(guān)系,如x-2y+z=(x-y)-(y-z),采用換元法簡(jiǎn)化式子.
解答:解:(1)
1
a-b
+
1
a+b
+
2a
a2+b2
+
4a3
a4+b4

=
2a
a2-b2
+
2a
a2+b2
+
4a3
a4+b4

=
4a3
a4-b4
+
4a3
a4+b4

=
8a7
a8-b8

(2)
x2+yz
x2+(y-z)x-yz
+
y2-zx
y2+(z+x)y+zx
+
z2+xy
z2-(x-y)z-xy

=
x(x-z)+z(x+y)
(x+y)(x-z)
+
y(x+y)-x(y+z)
(x+y)(y+z)
+
z(y+z)-y(z-x)
(z-x)(y+z)

=
x
x+y
+
z
x-z
+
y
y+z
-
x
x+y
-
z
x-z
-
y
y+z

=0;
(3)
x3-1
x3+2x2+2x+1
+
x3+1
x3-2x2+2x-1
-
2(x2+1)
x2-1

=
(x-1)(x2+x+1)
(x+1)(x2+x+1)
+
(x+1)(x2-x+1)
(x-1)(x2-x+1)
-
2(x2+1)
(x+1)(x-1)

=
x-1
x+1
+
x+1
x-1
-
2(x2+1)
(x+1)(x-1)

=0;
(4)設(shè)x-y=a,y-z=b,z-x=c,則
(y-x)(z-x)
(x-2y+z)(x+y-2z)
+
(z-y)(x-y)
(x+y-2z)(y+z-2x)
+
(x-z)(y-z)
(y+z-2x)(x-2y+z)

=-
ac
(a-b)(b-c)
-
ab
(b-c)(c-a)
-
cb
(c-a)(a-b)

=-
ac(c-a)+ab(a-b)+bc(b-c)
(a-b)(b-c)(c-a)

=
(a-b)(b-c)(c-a)
(a-b)(b-c)(c-a)

=1.
點(diǎn)評(píng):本題考查了分式的加減運(yùn)算,難度較大.因各分式復(fù)雜,故須觀察各式中分母的特點(diǎn),恰當(dāng)運(yùn)用通分的相關(guān)策略與技巧.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式的值:
(1)(
10
-2
15
)•
5

(2)(
3
+
2
)2007(
2
-
3
)2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式:
(1)3
3
+
2
-(2
2
+2
3
);
(2)化簡(jiǎn):
5
2
4x
-6
x
9
+2x
1
x
,并將自己所喜歡的x值代入化簡(jiǎn)結(jié)果進(jìn)行計(jì)算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用計(jì)算器計(jì)算下列各式的值.
(1)sin 20°
(2)cos 20°
(3)tan 48°
(4)sin 15°32′
(5)cos 49°18′
(6)tan 75°3′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式
(1)-9+5×(-6)-(-4)2÷(-8)
(2)(-
1
4
-
1
2
+
2
3
)×|-24|-
5
4
×(-2.5)×(-8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式:
(1)(a-b+c)(a-b-c);
(2)先化簡(jiǎn),再求值:(2a+b)2-(3a-b)2+5a(a-b),其中a=
1
2
,b=
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案