【題目】如圖,△ABC是⊙O的內接圓,且AB是⊙O的直徑,點D在⊙O上,BD平分∠ABC交AC于點E,DF⊥BC交BC延長線于點F.
(1)求證:DF是⊙O的切線.
(2)若,求DE的長.
【答案】(1)見解析(2)
【解析】
(1)連接OD,根據角平分線的定義得到∠ABD=∠DBF,由等腰三角形的性質得到∠ABD=∠ODB,等量代換得到∠DBF=∠ODB,推出∠ODF=90°,根據切線的判定定理得到結論;
(2)連接AD,根據圓周角定理得到∠ADE=90°,根據角平分線的定義得到∠DBF=∠ABD,解直角三角形得到AD=3,求得DE=.
解:(1)連接OD,
∵BD平分∠ABC交AC于點E,
∴∠ABD=∠DBF,
∵OB=OD,
∴∠ABD=∠ODB,
∴∠DBF=∠ODB,
∵∠DBF+∠BDF=90°,
∴∠ODB+∠BDF=90°,
∴∠ODF=90°,
∴FD是⊙O的切線;
(2)連接AD,
∵AB是⊙O的直徑,
∴∠ADE=90°,
∵BD平分∠ABC交AC于點E,
∴∠DBF=∠ABD,
在Rt△ABD中,BD=4,
∵sin∠ABD=sin∠DBF=,
∴AD=3,
∵∠DAC=∠DBC,
∴sin∠DAE=sin∠DBC=,
在Rt△ADE中,sin∠DAC=,
∴DE=.
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,星期可賣出150件,現需降價處理,且經市場調查:每降價2元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價元、每星期售出商品的利潤為元,請寫出與的函數關系式,并求出自變量的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,
當時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性 (填“相同”或“不相同”);
從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復該實驗,發(fā)現摸到綠球的頻率穩(wěn)定于,則的值是 ;
在的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(點A在點B的左側),與y軸交于點C(0,3),作直線BC.動點P在x軸上運動,過點P作PM⊥x軸,交拋物線于點M,交直線BC于點N,設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)當點P在線段OB上運動時,求線段MN的最大值;
(3)是否存在點P,使得以點C、O、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△OAB中,頂點O(0,0),A(﹣2,3),B(2,3),將△OAB與正方形ABCD組成的圖形繞點O順時針旋轉,每次旋轉90°,則第2020次旋轉結束時,點D的坐標為( 。
A.(﹣2,7)B.(7,2)C.(2,﹣7)D.(﹣7,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現從各年的隨機抽取了部分學生的鞋號,繪制了統計圖A和圖B,請根據相關信息,解答下列問題:
(1)本次隨機抽樣的學生數是多少?A中值是多少?
(2)本次調查獲取的樣本數據的眾數和中位數各是多少?
(3)根據樣本數據,若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com