【題目】如圖,D為△ABC的BC邊上的一點(diǎn),AB=10,AD=6,DC=2AD,BD= DC.
(1)求BC的長(zhǎng);
(2)求△ABC的面積.
【答案】
(1)解:∵AD=6,DC=2AD,
∴DC=12,
∵BD= DC,
∴BD=8,
BC=BD+DC=8+12=20
(2)解:在△ABD中,AB=10,AD=6,BD=8,
∵AB2=AD2+BD2,
∴△ABD為直角三角形,即AD⊥BC,
∵BC=BD+DC=8+12=20,AD=6,
∴S△ABC= ×20×6=60
【解析】(1)由DC=2AD,根據(jù)AD的長(zhǎng)求出DC的長(zhǎng),進(jìn)而求出BD的長(zhǎng)即可;(2)在直角三角形ABD中,由AB,AD以及BD的長(zhǎng),利用勾股定理的逆定理判斷得到三角形為直角三角形,即可求出三角形ABC面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的逆定理的相關(guān)知識(shí),掌握如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)是世界上最早認(rèn)識(shí)和應(yīng)用負(fù)數(shù)的國(guó)家,比西方早一千多年.在我國(guó)古代著名的數(shù)學(xué)專著《九章算術(shù)》中,首次引入負(fù)數(shù),如果收入100元記作+100元,則﹣80元表示( 。
A. 支出20元 B. 收入20元 C. 支出80元 D. 收入80元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,且∠1=∠2.求證:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平行四邊形ABCD中,E、F分別是邊AD、BC上的點(diǎn),且DE=BF,過(guò)E、F兩點(diǎn)作直線,分別與CD、AB的延長(zhǎng)線相交于點(diǎn)M、N,連接CE、AF.
(1)求證:四邊形AFCE是平行四邊形;
(2)求證:△MEC≌△NFA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2+4x﹣2=0配方后化為( )
A.(x+4)2=4B.(x﹣2)2=2C.(x+2)2=2D.(x+2)2=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A.2a2+3a2=a4
B.5a2﹣2a2=3
C.a3×2a2=2a6
D.3a6÷a2=3a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(巴中)(7分)如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)三角形ABC(項(xiàng)點(diǎn)是網(wǎng)格線的交點(diǎn)).
(1)先將△ABC豎直向上平移6個(gè)單位,再水平向右平移3個(gè)單位得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△A1B1C1繞B1點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得△A2B1C2,請(qǐng)畫出△A2B1C2;
(3)線段B1C1變換到B1C2的過(guò)程中掃過(guò)區(qū)域的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com