【題目】如圖,在四邊形ABCD中,∠ABC=90°,DE⊥AC于點(diǎn)E,且AE=CE,DE=5,EB=12.
(1)求AD的長;
(2)若∠CAB=30°,求四邊形ABCD的周長.

【答案】
(1)解:∵∠ABC=90°,AE=CE,EB=12,

∴EB=AE=CE=12.

∵DE⊥AC,DE=5,

∴在Rt△ADE中,

由勾股定理得AD= = =13


(2)解:∵在Rt△ABC中,∠CAB=30°,AC=AE+CE=24,

∴BC=12,AB=ACcos30°=12 ,

∵DE⊥AC,AE=CE,

∴AD=DC=13,

∴四邊形ABCD的周長為AB+BC+CD+AD=38+12


【解析】(1)根據(jù)等腰三角形的性質(zhì)和勾股定理即可得到結(jié)論;(2)解直角三角形求出各邊的長,于是得到結(jié)論.
【考點(diǎn)精析】利用勾股定理的概念和解直角三角形對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過 上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.
(1)若∠DAB=50°,求∠ATC的度數(shù);
(2)若⊙O半徑為2,CT= ,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊BC,AB分別相切于C,D兩點(diǎn),與邊AC交于E點(diǎn),弦CF與AB平行,與DO的延長線交于M點(diǎn).
(1)求證:點(diǎn)M是CF的中點(diǎn);
(2)若E是 的中點(diǎn),BC=a,寫出求AE長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個單位到達(dá)D點(diǎn)

1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________ ;

2)把這些點(diǎn)按ABCDA順次連接起來,這個圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CAAB,垂足為 A,AB=24,AC=12,射線 BMAB,垂足為 B, 一動點(diǎn) E A點(diǎn)出發(fā)以 3 厘米/秒沿射線 AN 運(yùn)動,點(diǎn) D 為射線 BM 上一動點(diǎn), 隨著 E 點(diǎn)運(yùn)動而運(yùn)動,且始終保持 EDCB,當(dāng)點(diǎn) E 經(jīng)過______秒時,△DEB 與△BCA 全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC請你按要求作圖、解答(不寫作法,但要保留作圖痕跡):

(1)用直尺和圓規(guī),過點(diǎn)B作∠ABC的角平分線交ACP;

(2)用直尺和直角三角板的直角畫PDAB、PEBC垂足分別為D、E

(3)用刻度尺分別量PD   cmPE   cm.得PD   PE(填大小關(guān)系)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OP∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請你參考這個作全等三角形的方法,解答下列問題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點(diǎn)F,求∠EFA的度數(shù);

(2)在(1)的條件下,請判斷FEFD之間的數(shù)量關(guān)系,并說明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案