如圖,已知AB是⊙O的直徑,點C是⊙O上一點,連接BC,AC,過點C作直線CD⊥AB于點D,點E是AB上一點,直線CE交⊙O于點F,連接BF,與直線CD交于點G.BC=6,BG=2,則FG=________.

16
分析:結(jié)合圖形,可以先證明△CBG和△FBC相似,兩個三角形中已經(jīng)有一個公共角,只需進一步證明∠BCG=∠F,根據(jù)等角的余角相等和圓周角定理,借助中間角∠A即可證明.
解答:∵AB是⊙O的直徑,
∴∠ACB=90°,
∵CD⊥AB于點D,
∴∠BCG=∠A,
又∠A=∠F,
∴∠BCG=∠F,
又∠CBG=∠FBC,
∴△CBG∽△FBC,

∵BC=6,BG=2,

∴BF=18,
所以,F(xiàn)G=BF-BG=18-2=16.
點評:熟練應(yīng)用等角的余角相等和圓周角定理,借助中間角∠A,證明∠BCG=∠F,掌握相似形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案