【題目】要使等式(x﹣y)2+M=(x+y)2成立,整式M應(yīng)是( 。
A. 2xy B. 4xy C. ﹣4xy D. ﹣2xy
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列判定,其中正確的有( ) ①若∠1=∠3,則AD∥BC;
②若AD∥BC,則∠1=∠2=∠3;
③若∠1=∠3,AD∥BC,則∠1=∠2;
④若∠C+∠3+∠4=180°,則AD∥BC.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=,BC=.某課題小組利用這張矩形紙片依次進(jìn)行如下操作(每次折疊后均展開).
如圖①,第一次將紙片折疊,使點(diǎn)B與點(diǎn)D重合,折痕與BD交與點(diǎn)O1,設(shè)O1D的中點(diǎn)為D1;
如圖②,第二次將紙片折疊,使點(diǎn)B與點(diǎn)D1重合,折痕與BD交與點(diǎn)O2,設(shè)O2D3的中點(diǎn)為D2;
如圖③,第三次將紙片折疊,使點(diǎn)B與點(diǎn)D2重合,折痕與BD交與點(diǎn)O3,設(shè)O3D2的中點(diǎn)為D3;
…
根據(jù)以上操作結(jié)果,回答下列問題:
(1)如圖①,MN是折痕,求證:△DA′M≌△DCN;
(2)分別求出線段BO1、BO2、BO3的長,并直接寫出第n次折疊后BOn的長(用含n的式子表示);
(3)如圖②,第二次折疊時,折痕一定會經(jīng)過點(diǎn)A嗎?請通過計算判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列圖形:①線段,②三角形,③平行四邊形,④正方形,⑤等腰三角形,⑥菱形,其中不是中心對稱圖形的是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點(diǎn)O逆時針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物線正好經(jīng)過點(diǎn)O,C,A三點(diǎn).
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動點(diǎn)P,過點(diǎn)P作x軸的平行線交拋物線于點(diǎn)M,分別過點(diǎn)P,點(diǎn)M作x軸的垂線,交x軸于E,F(xiàn)兩點(diǎn),問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動點(diǎn)H,在拋物線上是否存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】0.00813用科學(xué)記數(shù)法表示為( )
A.8.13×10﹣3
B.81.3×10﹣4
C.8.13×10﹣4
D.81.3×10﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x一元二次方程x2+mx+n=0.
(1)當(dāng)m=n+2時,利用根的判別式判斷方程根的情況.
(2)若方程有實(shí)數(shù)根,寫出一組滿足條件的m,n的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com