【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的A、B、C三點(diǎn)坐標(biāo)為A(2,0)、B(2,2)、C(6,3)。
(1) 請(qǐng)?jiān)趫D中畫出一個(gè)△,使△與△ABC是以坐標(biāo)原點(diǎn)為位似中心,相似比為2的位似圖形。
(2)求△的面積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩條互相垂直的公路,A廠離公路的距離為2千米,離公路的距離為5千米;B廠離公路的距離為11千米,離公路的距離為4千米;現(xiàn)在要在公路上建造一倉庫P,使A廠到P倉庫的距離與B廠到P倉庫的距離相等,求倉庫P的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時(shí)間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.
(1)求關(guān)于的函數(shù)解析式;
(2)步行的學(xué)生和騎自行車的學(xué)生誰先到達(dá)百花公園,先到了幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,5)、B(﹣1,0)、C(﹣3,2).
(1)請(qǐng)畫出將△ABC向右平移4個(gè)單位得到的△A1B1C1.
(2)請(qǐng)畫出將△ABC關(guān)于點(diǎn)O成中心對(duì)稱的△A2B2C2.
(3)請(qǐng)直接寫出△A1B1C1與△A2B2C2的對(duì)稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)問題)在同一直角坐標(biāo)系內(nèi)直線與,當(dāng)滿足什么條件時(shí),這兩條直線互相垂直?
探究問題:我們采取一般問題特殊化的策略來進(jìn)行探究.
探究一:如圖①,在同一直角坐標(biāo)系內(nèi)直線與有怎樣的位置關(guān)系?
解:如圖①,設(shè)點(diǎn)在直線上,則點(diǎn)一定在直線上.過點(diǎn)分別作的垂線,垂足分別為.
則,
∴
∵
∴
所以,在同一直角坐標(biāo)系內(nèi)直線與互相垂直.
探究二:如圖②,在同一直角坐標(biāo)系內(nèi)直線上,則點(diǎn)一定在直線上.過點(diǎn)分別作軸的垂線,垂足分別為.
∵,,,
∴,
又∵
∴
∴
又∵
∴
∵
∴
所以,在同一直角坐標(biāo)系內(nèi)直線與互相垂直.
探究三:如圖③,在同一直角坐標(biāo)系內(nèi)直線與有怎樣的位置關(guān)系?
(仿照上述方法解答,寫出探究過程)
(1)在同一直角坐標(biāo)系內(nèi)直線與,當(dāng)滿足數(shù)量關(guān)系為 時(shí),這兩條直線互相垂直.
(2)在同一直角坐標(biāo)系內(nèi)已知直線與直線,使它與直線互相垂直,的值為: ;兩直線垂足的坐標(biāo)為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500元.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4部.
(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤達(dá)到多少元?
(2)若設(shè)每部手機(jī)降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場(chǎng)要想獲得最大利潤,每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)E、F分別是邊BC、AC上的點(diǎn),且BE=CF,AE、BF交于點(diǎn)D.
(1)如圖1,求證:AE=BF.
(2)如圖2,過點(diǎn)A作AG⊥BF于點(diǎn)G,過點(diǎn)C作CH∥AE交BF延長線于點(diǎn)H,若D為BG中點(diǎn),求BH:CH的值;
(3)如圖3,在(2)的條件下,L為BA延長線上一點(diǎn),且FL=FB,△FLA的面積為2,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點(diǎn)E在⊙O上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長為多少?
(3)連接OD,OE,當(dāng)∠DOE=90°時(shí),AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com