【題目】如圖所示,在直角坐標(biāo)系xOy中,△ABC三點(diǎn)的坐標(biāo)分別為A(-1,0),B(-4,4),C(0,3).

(1)在圖中畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1;寫出B1的坐標(biāo)為.
(2)填空:在圖中,若B2(-4,-4)與點(diǎn)B關(guān)于一條直線成軸對(duì)稱,則這條對(duì)稱軸是 , 此時(shí)點(diǎn)C關(guān)于這條直線的對(duì)稱點(diǎn)C2的坐標(biāo)為
(3)在y軸上確定一點(diǎn)P,使△APB的周長最小.(注:簡要說明作法,保留作圖痕跡,不求坐標(biāo))

【答案】
(1)(4,4)
(2)x軸;(0,-3)
(3)解:連接A1B,交y軸于一點(diǎn),就是所求點(diǎn)P

【解析】(1)畫圖,

B1(4,4),(2) x軸,(0,-3),
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解作軸對(duì)稱圖形的相關(guān)知識(shí),掌握畫對(duì)稱軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱點(diǎn)③依次連線,以及對(duì)軸對(duì)稱-最短路線問題的理解,了解已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,E,F是對(duì)角線AC上的兩點(diǎn),當(dāng)點(diǎn)E,F滿足下列哪個(gè)條件時(shí),四邊形DEBF不一定是平行四邊形( )

A.OE=OF
B.DF=BE
C.AE=CF
D.∠AEB=∠CFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=5cm,BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最小?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( )
A.a3·a4=a12
B.(a3)4=a7
C.(a2b)3=a6b3
D.a3÷a4=a(a≠0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E,B,F(xiàn),C四點(diǎn)在一條直線上,EB=CF,∠A=∠D,再添一個(gè)條件仍不能證明△ABC≌△DEF的是( )

A.AB=DE
B.DF∥AC
C.∠E=∠ABC
D.AB∥DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OAl于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)BBP的延長線交直線l于點(diǎn)C.

(1)求證:AB=AC;

(2)若,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2+a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個(gè)連續(xù)的偶數(shù),若中間的一個(gè)數(shù)是2n,則這三個(gè)連續(xù)的偶數(shù)的和是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖9,已知在等邊三角形ABC中,D是AC的中點(diǎn),E為BC延長線上一點(diǎn),且CE=CD,DM BC,垂足為M.求證:M是BE的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案