計算(
1
3
+
1
4
-
1
2
)×12
時,應該運用(  )
A、加法交換律
B、乘法分配律
C、乘法交換律
D、乘法結(jié)合律
分析:計算是應該用12和括號內(nèi)的各項分別相乘,然后再把所得結(jié)果相加,故應用分配律.
解答:解:應該乘法分配律.
故選B.
點評:本題主要考查了運算律,正確對各種運算律是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

計算:
(1)-22÷(-
1
5
)2×|-5|×(-0.1)3
;
(2)(-
1
2
-
1
3
+
1
4
)×(-12)

(3)(8xy-x2+y2)-4(x2-y2+2xy-3);
(4)(3x2y+5xy2)-9x2y-(6x2y+2xy2-12x2y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算
(1)(-12)-5+(-14)-(-39);
(2)(-
1
2
-
1
3
+
1
4
)×(-12)
(3)-14-
1
6
×[2-(-3)2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若想簡便計算(
1
3
+
1
4
+
1
2
)×(-48)
,應該運用(  )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若想簡便計算(
1
3
+
1
4
+
1
2
)×(-48)
,應該運用(  )
A.加法交換律B.分配律C.乘法交換律D.乘法結(jié)合律

查看答案和解析>>

同步練習冊答案