【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.(注:結(jié)果保留π )
(1)把圓片沿數(shù)軸向右滾動半周,點B到達數(shù)軸上點C的位置,點C表示的數(shù)是 數(shù)(填“無理”或“有理”),這個數(shù)是 ;
(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是 ;
(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,﹣1,+3,﹣4,﹣3.
①第 次滾動后,A點距離原點最近,第 次滾動后,A點距離原點最遠.
②當圓片結(jié)束運動時,A點運動的路程共有 ,此時點A所表示的數(shù)是 .
【答案】(1)無理數(shù),п;(2)4п或-4п;(3)①4,3;②26п,-6п
【解析】
(1)利用圓的半徑以及滾動周數(shù)即可得出滾動距離;
(2)利用圓的半徑以及滾動周數(shù)即可得出滾動距離;
(3)①利用滾動的方向以及滾動的周數(shù)即可得出A點移動距離變化;
②利用絕對值的性質(zhì)以及有理數(shù)的加減運算得出移動距離和A表示的數(shù)即可.
解:(1)把圓片沿數(shù)軸向左滾動半周,點B到達數(shù)軸上點C的位置,點C表示的數(shù)是無理數(shù),這個數(shù)是π;
故答案為:無理,π;
(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是4π或-4π;
故答案為:4π或-4π;
(3)①∵圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,-1,+3,-4,-3,
∴第4次滾動后,A點距離原點最近,第3次滾動后,A點距離原點最遠,
故答案為:4,3;
②∵|+2|+|-1|+|+3|+|-4|+|-3|=13,
∴13×2π×1=26π,
∴A點運動的路程共有26π;
∵(+2)+(-1)+(+3)+(-4)+(-3)=-3,
(-3)×2π=-6π,
∴此時點A所表示的數(shù)是:-6π,
故答案為:26π,-6π.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點C是線段AB上一點,點M,N,P分別是線段AC,BC,AB的中點.
(1)若AB=12 cm,則MN的長度是______cm;
(2)若AC=3 cm,CP=1 cm,求線段PN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東62°方向上,在船B的北偏西37°方向上,若AP=30海里.求船B到船P的距離PB(結(jié)果用含非特殊角的三角函數(shù)表示即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( )
①a=,b=,c=; ②a=b,∠A=45°; ③a=2,b=2,c=;④∠A=27°,∠B=63°;⑤a=9,b=12,c=15
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF過□ABCD對角線的交點O,交AD于E,交BC于F,若□ ABCD的周長為16,OE=2.5,則四邊形EFCD的周長為( )
A. 10 B. 11 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于點E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)若D為AB的中點,則∠A的度數(shù)滿足什么條件時,四邊形BECD是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com