【題目】解下面各題
(1)解方程:x2﹣4x﹣12=0;
(2)解不等式組:

【答案】
(1)解:(x﹣6)(x+2)=0,

x﹣6=0或x+2=0,

所以x1=6,x2=﹣2;


(2)解:

解①得x≥﹣1,

解②得x<4,

所以不等式組的解集是﹣1≤x<4.


【解析】(1)利用因式分解法解方程;(2)分別解兩個不等式得到x≥﹣1和x<4,然后根據(jù)大小小大中間找確定不等式組的解集.
【考點精析】本題主要考查了一元一次不等式組的解法的相關(guān)知識點,需要掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.

解:∵OA⊥OB(已知)

所以_____=90°________

因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代換)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(﹣2,0),點B的坐標(biāo)為(0,n),以點B為直角頂點,點C在第二象限內(nèi),作等腰直角△ABC.則點C的坐標(biāo)是_____(用字母n表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,點B是⊙O上一點,連接BP并延長,交直線l于點C,使得AB=AC.
(1)求證:AB是⊙O的切線;
(2)PC=2 ,OA=4. ①求⊙O的半徑;
②求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2)…按這樣的運動規(guī)律,經(jīng)過第2015次運動后,動點P的坐標(biāo)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分別為垂足,則下列四個結(jié)論:①∠DEF=∠DFE; ②AE=AF; ③AD平分∠EDF; ④AD垂直平分EF.其中正確結(jié)論有()

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點D在線段CB上,∠BAC≠90°時,請你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補(bǔ)充完整,并直接寫出此時之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當(dāng)DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)形結(jié)合"是一種重要的數(shù)學(xué)思想,觀察下面的圖形和算式.

解答下列問題:

(1)試猜想1+3+5+7+9+…+19=______=( );

(2)試猜想,當(dāng)n是正整數(shù)時,1+3+5+7+9+…+(2n-1)=

(3)請用(2)中得到的規(guī)律計算:19+21+23+25+27+…+99.

查看答案和解析>>

同步練習(xí)冊答案