(2008•十堰)5月12日,我國(guó)四川省汶川縣等地發(fā)生強(qiáng)烈地震,在抗震救災(zāi)中得知,甲、乙兩個(gè)重災(zāi)區(qū)急需一種大型挖掘機(jī),甲地需要25臺(tái),乙地需要23臺(tái);A、B兩省獲知情況后慷慨相助,分別捐贈(zèng)該型號(hào)挖掘機(jī)26臺(tái)和22臺(tái)并將其全部調(diào)往災(zāi)區(qū).如果從A省調(diào)運(yùn)一臺(tái)挖掘機(jī)到甲地要耗資0.4萬(wàn)元,到乙地要耗資0.3萬(wàn)元;從B省調(diào)運(yùn)一臺(tái)挖掘機(jī)到甲地要耗資0.5萬(wàn)元,到乙地要耗資0.2萬(wàn)元.設(shè)從A省調(diào)往甲地x臺(tái)挖掘機(jī),A、B兩省將捐贈(zèng)的挖掘機(jī)全部調(diào)往災(zāi)區(qū)共耗資y萬(wàn)元.
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)若要使總耗資不超過(guò)15萬(wàn)元,有哪幾種調(diào)運(yùn)方案?
(3)怎樣設(shè)計(jì)調(diào)運(yùn)方案能使總耗資最少?最少耗資是多少萬(wàn)元?

【答案】分析:(1)利用x就可以表示出A省,B省調(diào)甲,乙兩地的臺(tái)數(shù),進(jìn)而可以得到費(fèi)用,得到函數(shù)解析式;
(2)總耗資不超過(guò)15萬(wàn)元,即可得到關(guān)于x的不等式,即可求解;
(3)根據(jù)x的范圍就可確定方案的個(gè)數(shù),依據(jù)函數(shù)的性質(zhì)即可求解.
解答:解:(1)由題意得:y=0.4x+0.3(26-x)+0.5(25-x)+0.2(23-26+x),
或:y=0.4x+0.3(26-x)+0.5(25-x)+0.2(22-25+x),
即:y=-0.2x+19.7(3≤x≤25);

(2)依題意,得-0.2x+19.7≤15,
解之,得,
又∵23.5≤x≤25,且x為整數(shù),
∴x=24或25,
即,要使總耗資不超過(guò)15萬(wàn)元,有如下兩種調(diào)運(yùn)方案:
方案一:從A省往甲地調(diào)運(yùn)24臺(tái),往乙地調(diào)運(yùn)2臺(tái);從B省往甲地調(diào)運(yùn)1臺(tái),往乙地調(diào)運(yùn)21臺(tái).
方案二:從A省往甲地調(diào)運(yùn)25臺(tái),往乙地調(diào)運(yùn)1臺(tái);從B省往甲地調(diào)運(yùn)0臺(tái),往乙地調(diào)運(yùn)22臺(tái).

(3)由(1)知:y=-0.2x+19.7(3≤x≤25),
∵-0.2<0,
∴y隨x的增大而減小,
∴當(dāng)x=25時(shí),y最小值=-0.2×25+19.7=14.7,
答:設(shè)計(jì)如下調(diào)運(yùn)方案:從A省往甲地調(diào)運(yùn)25臺(tái),往乙地調(diào)運(yùn)1臺(tái);
從B省往甲地調(diào)運(yùn)0臺(tái),往乙地調(diào)運(yùn)22臺(tái),能使總耗資最少.
最少耗資為14.7萬(wàn)元.
點(diǎn)評(píng):本題是貼近社會(huì)生活的應(yīng)用題,賦予了生活氣息,使學(xué)生真切地感受到“數(shù)學(xué)來(lái)源于生活”,體驗(yàn)到數(shù)學(xué)的“有用性”.這樣設(shè)計(jì)體現(xiàn)了《新課程標(biāo)準(zhǔn)》的“問(wèn)題情景-建立模型-解釋、應(yīng)用和拓展”的數(shù)學(xué)學(xué)習(xí)模式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年陜西省寶雞市渭濱區(qū)九年級(jí)質(zhì)量檢測(cè)試卷(解析版) 題型:解答題

(2008•十堰)已知拋物線y=-ax2+2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),與y軸的正半軸交于點(diǎn)C.
(1)直接寫出拋物線的對(duì)稱軸,及拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)C在以AB為直徑的⊙P上時(shí),求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)M和(2)中拋物線上的三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2008•十堰)已知拋物線y=-ax2+2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),與y軸的正半軸交于點(diǎn)C.
(1)直接寫出拋物線的對(duì)稱軸,及拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)C在以AB為直徑的⊙P上時(shí),求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)M和(2)中拋物線上的三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省臨沂市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•十堰)已知拋物線y=-ax2+2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),與y軸的正半軸交于點(diǎn)C.
(1)直接寫出拋物線的對(duì)稱軸,及拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)C在以AB為直徑的⊙P上時(shí),求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)M和(2)中拋物線上的三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•十堰)已知拋物線y=-ax2+2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),與y軸的正半軸交于點(diǎn)C.
(1)直接寫出拋物線的對(duì)稱軸,及拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)C在以AB為直徑的⊙P上時(shí),求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)M和(2)中拋物線上的三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案