【題目】(1)如圖①,OP是∠MON的平分線,點(diǎn)A為OM上一點(diǎn),點(diǎn)B為OP上一點(diǎn).請(qǐng)你利用該圖形在ON上找一點(diǎn)C,使△COB≌△AOB,請(qǐng)?jiān)趫D①畫出圖形.參考這個(gè)作全等三角形的方法,解答下列問題:
(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.請(qǐng)你寫出FE與FD之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,在(2)中所得結(jié)論是否仍然成立?請(qǐng)你直接作出判斷,不必說(shuō)明理由.
【答案】(1)畫圖見解析;(2)DF=EF,理由見解析;(3)DF=EF 仍然成立,理由見解析.
【解析】(1)在∠MON的兩邊上以O(shè)為端點(diǎn)截取相等的兩條相等的線段,兩個(gè)端點(diǎn)與角平分線上任意一點(diǎn)相連,所構(gòu)成的兩個(gè)三角形全等,即△COB≌△AOB;
(2)根據(jù)圖(1)的作法,在CG上截取CG=CD,證得△CFG≌△CFD(SAS),得出DF=GF;再根據(jù)ASA證明△AFG≌△AFE,得EF=FG,故得出EF=FD;
(3)根據(jù)圖(1)的作法,在CG上截取AG=AE,證得△EAF≌△GAF(SAS),得出FE=FG;再根據(jù)ASA證明△FDC≌△FGC,得DF=FG,故得出EF=FD.
解:(1)如圖①所示,△COB≌△AOB,點(diǎn)C即為所求.
(2)如圖②,在CG上截取CG=CD,
∵CE是∠BCA的平分線,
∴∠DCF=∠GCF,
在△CFG和△CFD中,
CG=CD,∠DCF=∠GCF,CF=CF,
∴△CFG≌△CFD(SAS),
∴DF=GF.
∵∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,
∴∠FAC=∠BAC,∠FCA=∠ACB,且∠EAF=∠GAF,
∴∠FAC+∠FCA=(∠BAC+∠ACB)==60°,
∴∠AFC=120°,
∴∠CFD=60°=∠CFG,
∴∠AFG=60°,
又∵∠AFE=∠CFD=60°,
∴∠AFE=∠AFG,
在△AFG和△AFE中,
∠AFE=∠AFG,AF=AF,∠EAF=∠GAF,
∴△AFG≌△AFE(ASA),
∴EF=GF,
∴DF=EF;
(3)DF=EF 仍然成立.
證明:如圖③,在CG上截取AG=AE,
同(2)可得△EAF≌△GAF(SAS),
∴FE=FG,∠EFA=∠GFA.
又由題可知,∠FAC=∠BAC,∠FCA=∠ACB,
∴∠FAC+∠FCA=(∠BAC+∠ACB)=60°,
∴∠AFC=180°﹣(∠FAC+∠FCA)=120°,
∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,
∴∠CFG=∠CFD=60°,
同(2)可得△FDC≌△FGC(ASA),
∴FD=FG,
∴FE=FD.
“點(diǎn)睛”此題主要考查全等三角形的判定和性質(zhì)的運(yùn)用,全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具,在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件,要注意三角形間的公共邊和公共角,必要時(shí)添加適當(dāng)輔助線構(gòu)造全等三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AO是△ABC的角平分線。以O(shè)為圓心,OC為半徑作⊙O。
(1)(3分)求證:AB是⊙O的切線。
(2)(3分)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D, tanD=,求的值。
(3)(4分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下列各組線段為邊,能組成三角形的是( )
A.1cm,2cm,3cmB.2cm,3cm,4cmC.5cm,6cm,12cmD.2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品的進(jìn)價(jià)為150元,出售時(shí)標(biāo)價(jià)為225元,由于銷售情況不好,商店準(zhǔn)備降價(jià)出售,但要保證利潤(rùn)不低于10%,如果商店要降x元出售此商品,請(qǐng)列出不等式_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,AD∥BC,當(dāng)滿足下列條件時(shí),四邊形ABCD是平行四邊形的是( ).
A.∠A+∠C=180°
B.∠B+∠D=180°
C.∠A+∠B=180°
D.∠A+∠D=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知是關(guān)于的方程的解,求的值.
(2)已知關(guān)于x的方程的解與方程的解互為倒數(shù),求的值.
(3)小麗在解關(guān)于的方程時(shí),出現(xiàn)了一個(gè)失誤:“在將移到方程的左邊時(shí),忘記了變號(hào).”結(jié)果她得到方程的解為,求的值和原方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有人問小明的生日是幾號(hào),小明說(shuō):“在日歷表上,我的生日連同上、下、左、右5個(gè)日期之和是21.”小明撒謊了嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com