【題目】如圖,在RtABF中,∠F=90°,點(diǎn)C是線段BF上異于點(diǎn)B和點(diǎn)F的一點(diǎn),連接AC,過點(diǎn)CCDACAB于點(diǎn)D,過點(diǎn)CCEABAB于點(diǎn)E,則下列說法中,錯(cuò)誤的是(

A.ABC中,AB邊上的高是CEB.ABC中,BC邊上的高是AF

C.ACD中,AC邊上的高是CED.ACD中,CD邊上的高是AC

【答案】C

【解析】

根據(jù)三角形某邊上的高的定義(從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在的直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高),依次檢驗(yàn)四個(gè)選項(xiàng),即可得到答案.

解:根據(jù)三角形某邊上的高的定義驗(yàn)證:

A. ABC中,AB邊上的高是CE,故A正確;

B. ABC中,BC邊上的高是AF,故B正確;

C. ACD中,AC邊上的高是CD,故C錯(cuò)誤;

D. ACD中,CD邊上的高是AC,故D正確;

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)m°得到△EDC,若點(diǎn)A、DE在同一直線上,∠ACB=n°,則∠ADC的度數(shù)是( 。

A. mn)°B. 90+nm)°C. 90n+m)°D. 1802nm)°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AD是BC邊上的中線,過點(diǎn)D作BA的平行線交AC于點(diǎn)O,過點(diǎn)A作BC的平行線交DO的延長(zhǎng)線于點(diǎn)E,連接CE.

(1)求證:四邊形ADCE是菱形;
(2)作出△ABC外接圓,不寫作法,請(qǐng)指出圓心與半徑;
(3)若AO:BD= :2,求證:點(diǎn)E在△ABC的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) yl= x ( x 0 ) , x > 0 )的圖象如圖所示,則結(jié)論: 兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3 ,3 ) 當(dāng) x > 3 時(shí), 當(dāng) x 1時(shí), BC = 8

當(dāng) x 逐漸增大時(shí), yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號(hào)是_ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖像經(jīng)過點(diǎn).

(1)k的值,并判斷點(diǎn)是否在該反比例函數(shù)的圖像上;

(2)該反比例函數(shù)圖像在第______象限,在每個(gè)象限內(nèi),yx的增大而_______.

(3)當(dāng)時(shí),求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你知道什么是“低碳生活”嗎?“低碳生活”是指人們生活中盡量減少所耗能量,從而降低碳(特別是二氧化碳)的排放量的一種生活方式.

1)如果用xL)表示耗油量,用ykg)表示開私家車的二氧化碳排放量,則yx之間的關(guān)系式可表示為___________;

2)在上述關(guān)系式中,耗油量每增加1L,二氧化碳排放量增加________kg.當(dāng)耗油量從10L增加到100L時(shí),二氧化碳排放量從________kg增加到________kg;

3)小穎家本月家居用電的耗電量約為90kwh、開私家車的耗油量約為70L、天然氣使用量約20m、自來水使用量約6噸,請(qǐng)你計(jì)算一下小穎家本月這幾項(xiàng)的二氧化碳排放總量;

4)你打算從哪些小事做起踐行低碳生活?請(qǐng)直接寫出兩條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD被分成四部分,其中△ABE、△ECF、△ADF的面積分別為2、3、4,則△AEF的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是邊長(zhǎng)為1的正方形ABCD的邊AB上任意一點(diǎn)(不含A,B),過B,C,E三點(diǎn)的圓與BD相交于點(diǎn)F,與CD相交于點(diǎn)G,與∠ABC的外角平分線相交于點(diǎn)H.

(1)求證:四邊形EFCH是正方形;
(2)設(shè)BE=x,△CFG的面積為y,求y與x的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AD=4,點(diǎn)P從點(diǎn)A出發(fā),沿折線AC﹣CB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)P在AC上的速度為每秒2個(gè)單位長(zhǎng)度,在CB上的速度為每秒1個(gè)單位長(zhǎng)度,同時(shí),點(diǎn)Q從點(diǎn)A出發(fā),沿AC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)終點(diǎn)時(shí),點(diǎn)P也隨之停止.過點(diǎn)P作PM⊥AD于點(diǎn)M,連接QM,以PM、QM為鄰邊作PMQN,設(shè)PMQN與矩形ABCD重疊部分圖形的周長(zhǎng)為d(長(zhǎng)度單位),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t>0)

(1)求AC的長(zhǎng)
(2)用含t的代數(shù)式表示線段CP的長(zhǎng).
(3)當(dāng)點(diǎn)P在線段AC上時(shí),求d與t之間的函數(shù)關(guān)系式.
(4)經(jīng)過點(diǎn)N的直線將矩形ABCD的面積平分,若該直線同時(shí)將PMQN的面積分成1:3的兩部分,直接寫出此時(shí)t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案