如圖,直線l1、l2交于點A,試求點A的坐標(biāo).

解:設(shè)l2的方程為y=kx+b,因為l2經(jīng)過點(0,5)和(1,3).
所以
解得
即l2的方程為y=-2x+5,同理可求出l1的方程為y=x.
聯(lián)立得
解得
∴點A的坐標(biāo)為().
分析:本題需通過觀察圖象,先求出兩個函數(shù)的解析式,再聯(lián)立兩函數(shù)的解析式,所得方程組的解即為A點的坐標(biāo).
點評:本題是一道數(shù)形結(jié)合題,考查了識別函數(shù)圖象的能力,是一道較為簡單的題,同學(xué)們要能利用坐標(biāo)正確的求出函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線L1,L2相交于A,L1與x軸的交點坐標(biāo)為(-1,0),L2與y軸的交點坐標(biāo)為(0,精英家教網(wǎng)-2),結(jié)合圖象解答下列問題:
(1)求出直線L2表示的一次函數(shù)的表達式
 

(2)當(dāng)x滿足
 
時,L1,L2表示兩個一次函數(shù)的函數(shù)值都大于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,直線l1,l2,l3相交于一點,則下列答案中,全對的一組是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1與l2相交于點O,OM⊥l1,若∠α=44°,則∠β等于
46°
46°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1、l2、l3分別過正方形ABCD的三個頂點A,B,D,且相互平行,若l1與l2的距離為1,l2與l3的距離為1,則該正方形的面積是
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1與l2相交于點P,l1的函數(shù)表達式y(tǒng)=kx+b,且經(jīng)過(1,7)和(-3,-1)兩點,點P的橫坐標(biāo)為-1,且l2交y軸于點A(0,-1).
(1)求直線l2的函數(shù)表達式.
(2)若點(a,2)在直線L2圖象上,求a的值.

查看答案和解析>>

同步練習(xí)冊答案