平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖a,若AB∥CD,點P在AB、CD外部.試說明∠BPD=∠B-∠D;
(2)將點P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請說明你的結(jié)論成立的理由;
(3)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明)
分析:(1)由AB∥CD,根據(jù)平行線的性質(zhì),易得∠1=∠B,又由三角形外角的性質(zhì)可得:∠1=∠D+∠BPD,繼而求得答案;
(2)首先過點P作PE∥AB,根據(jù)平行線的性質(zhì),可得∠1=∠B,∠2=∠D,繼而證得∠BPD=∠B+∠D.
(3)首先連接QP,并延長到E,利用三角形外角的性質(zhì),可證得∠BPD=∠1+∠2=∠BQP+∠B+∠DQP+∠D=∠B+∠D+∠BQD.
解答:(1)證明:∵AB∥CD,
∴∠1=∠B,
∵∠1=∠BPD+∠D,
∴∠BPD=∠B-∠D;

(2)不成立.∠BPD=∠B+∠D.
理由:過點P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠1+∠2=∠B+∠D;

(3)連接QP,并延長到E,
∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,
∴∠BPD=∠1+∠2=∠BQP+∠B+∠DQP+∠D=∠B+∠D+∠BQD.
點評:此題考查了平行線的性質(zhì)以及三角形外角的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、在同一平面內(nèi),兩條不相重合的直線位置關(guān)系有兩種:
相交
平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在同一平面內(nèi),兩條不相重合的直線位置關(guān)系有兩種:________和________.

查看答案和解析>>

同步練習(xí)冊答案