如果式子2x13x3的值相等,那么x________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問(wèn)題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程
2x-1
x
-
x
2x-1
=2
時(shí),如果設(shè)
2x-1
x
=y
,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.請(qǐng)用換元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=2x2-4x+n與x軸交于不同的兩點(diǎn)A、B,其頂點(diǎn)是C,點(diǎn)D是拋物線的對(duì)稱軸與x軸精英家教網(wǎng)的交點(diǎn).
(1)求實(shí)數(shù)n的取值范圍;
(2)求頂點(diǎn)C的坐標(biāo)和線段AB的長(zhǎng)度(用含有m的式子表示);
(3)若直線y=
2
x+1
分別交x軸、y軸于點(diǎn)E、F,問(wèn)△BDC與△EOF是否有可能全等?如果可能,請(qǐng)證明;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,要設(shè)計(jì)一個(gè)矩形的花壇,花壇長(zhǎng)60m,寬40m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側(cè)有兩個(gè)半圓環(huán)形甬道,半圓環(huán)形甬道的內(nèi)半圓的半徑為10m,精英家教網(wǎng)橫向甬道的寬度是其它各甬道寬度的2倍.設(shè)橫向甬道的寬為2x m.(π的值取3)
(1)用含x的式子表示兩個(gè)半圓環(huán)形甬道的面積之和;
(2)當(dāng)所有甬道的面積之和比矩形面積的
15
多36m2時(shí),求x的值;
(3)根據(jù)設(shè)計(jì)的要求,x的值不能超過(guò)3m.如果修建甬道的總費(fèi)用(萬(wàn)元)與x(m)成正比例關(guān)系,比例系數(shù)是7.59,花壇其余部分的綠化費(fèi)用為0.03萬(wàn)元/m2,那么x為何值時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)分解下列因式,將結(jié)果直接寫在橫線上:
x2-6x+9=
(x-3)2
(x-3)2
,25x2+10x+1=
(5x+1)2
(5x+1)2
,4x2+12x+9=
(2x+3)2
(2x+3)2

(2)觀察上述三個(gè)多項(xiàng)式的系數(shù),有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜測(cè):若多項(xiàng)式ax2+bx+c(a>0)是完全平方式,那么系數(shù)a、b、c之間一定存在某種關(guān)系.請(qǐng)你用數(shù)學(xué)式子表示小明的猜想.
b2=4ac
b2=4ac
(說(shuō)明:如果你沒(méi)能猜出結(jié)果,就請(qǐng)你再寫出一個(gè)與(1)中不同的完全平方式,并寫出這個(gè)式中個(gè)系數(shù)之間的關(guān)系.)
(3)若多項(xiàng)式x2+ax+c和x2+cx+a都是完全平方式,利用(2)中的規(guī)律求ac的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案