【題目】海珠區(qū)某學(xué)校為進一步加強和改進學(xué)校體育工作,切實提高學(xué)生體質(zhì)健康水平,決定推進“一人一球”活動計劃. 學(xué)生可根據(jù)自己的喜好選修一門球類項目(A :足球,B:籃球,C:排球,D:羽毛球,E:乒乓球),陳老師對某班全班同學(xué)的

選課情況進行統(tǒng)計后,制成了兩幅不完整的統(tǒng)計圖 (如圖).

(1) 求出該班的總?cè)藬?shù),并將條形統(tǒng)計圖補充完整;

(2) 若該校共有學(xué)生 2500 名,請估計約有多少人選修足球?

(3) 該班班委 4 人中,1 人選修足球,1 人選修籃球,2 人選修羽毛球,陳老師要從這

4 人中任選 2 人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求 選出的 2 人中至少有 1 人選修羽毛球的概率.

【答案】(1)見解析(2)850(3)

【解析】分析:(1)、先利用C的人數(shù)和所占的百分比計算出全班人數(shù),再利用E的百分比計算出E的人數(shù),則用全班人數(shù)分別減去B、CD、E的人數(shù)得到A的人數(shù),補全統(tǒng)計圖即可.

(2)根據(jù)樣本估計總體,用表示全校學(xué)生對足球感興趣的百分比,然后用2500乘以即可得到選修足球的人數(shù);
(4)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),找出選出的人至少1人選修羽毛球所占結(jié)果數(shù),然后根據(jù)概率公式求解.

詳解:(1)該班總?cè)藬?shù)是:該班人數(shù)為12÷24%=50(),

答:該班總?cè)藬?shù)是50.

E類人數(shù)是:10%×50=5(),

A類人數(shù)為:5071295=17(),

補全條形統(tǒng)計圖如圖所示:

(2)選修足球的人數(shù):(人),

答:該校約有850人選修足球.

(3)用代表選修足球的1人,用B代表選修籃球的1人,用D1、D2代表選修足球的2人,根據(jù)題意畫出樹狀圖如下:

由圖可以看出,可能出現(xiàn)的結(jié)果有12種,并且它們出現(xiàn)的可能性相等.

其中至少1人選修羽毛球的結(jié)果有10種,

所以至少有 1 人選修羽毛球的概率

答:選出的人至少1人選修羽毛球的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

一般地,在數(shù)軸上點表示的實數(shù)分別為,),則,兩點的距離.如圖,在數(shù)軸上點,表示的實數(shù)分別為-3,4,則記,因為,顯然,兩點的距離

若點為線段的中點,則,所以,即

解決問題:

1)直接寫出線段的中點表示的實數(shù)    

2)在點右側(cè)的數(shù)軸上有點,且,求點表示的實數(shù);

3)在(2)的條件下,點的中點,點的中點,若,兩點同時沿數(shù)軸向正方向運動,點的速度是點速度的2倍,的中點的中點也隨之運動,3秒后,,則點的速度為每秒     個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠B=90°,AD=8cmBC=10cm,AB=6cm,點Q從點A出發(fā)以1 cm/s的速度向點D運動,點P從點B出發(fā)以2 cm/s的速度向點C運動,P,Q兩點同時出發(fā),當(dāng)點P到達點C時,兩點同時停止運動.若設(shè)運動時間為ts

1)直接寫出:QD=______cm,PC=_______cm;(用含t的式子表示)

2)當(dāng)t為何值時,四邊形PQDC為平行四邊形?

3)若點P與點C不重合,且DQ≠DP,當(dāng)t為何值時,DPQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,BD是它的一條對角線,過A、C兩點分別作,E、F為垂足.

1)如圖,求證:;

2)如圖,連接AC,設(shè)ACBD交于點O,若.在不添加任何輔助線的情況下,請直接寫出圖中的所有長度是OE長度2倍的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸的正半軸、y軸的正半軸上,且OAOC)的長是方程的兩個根.

1)如圖,求點A的坐標(biāo);

2)如圖,將矩形OABC沿某條直線折疊,使點A與點C重合,折痕交CB于點D,交OA于點E.求直線DE的解析式;

3)在(2)的條件下,點P在直線DE上,在直線AC上是否存在點Q,使以點A、B、PQ為頂點的四邊形是平行四邊形.若存在,請求出點Q坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用1 000元購進一批晨光套尺,很快銷售一空;商店又用1 500元購進第二批該款套尺,購進時單價是第一批的倍,所購數(shù)量比第一批多100套.

1)求第一批套尺購進時單價是多少?

2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)化簡求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

(1)作ABC關(guān)于點C成中心對稱的A1B1C1;

(2)將A1B1C1向右平移3個單位,作出平移后的A2B2C2;

(3)在x軸上求作一點P,使PA1+PC2的值最小,并求最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形是平行四邊形,點邊上運動(點不與點,重合)

1)如圖1,當(dāng)點運動到邊的中點時,連接,若平分,證明:;

2)如圖2,過點且交的延長線于點,連接.若,,,在線段上是否存在一點,使得四邊形是菱形?若存在,請說明當(dāng)發(fā),點分別在線段,上什么位置時四邊形是菱形,并證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案