【題目】如圖,在平面直角坐標系xOy中,已知直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,點P是兩直線的交點,點A、B、C、Q分別是兩條直線與坐標軸的交點.若四邊形PQOB的面積是5.5,且,若存在一點D,使以A、B、P、D為頂點的四邊形是平行四邊形,則點D的坐標為________.
【答案】,或,或,
【解析】
已知直線解析式,令,求出的值,可求出點,的坐標.聯(lián)立方程組求出點的坐標;先根據(jù)得到、的關系,然后求出,并都用字母表示,根據(jù),列式求出與的值,得出點的坐標;根據(jù)圖形以、、、為頂點的四邊形是平行四邊形,如圖所示,求出滿足題意,,的坐標.
解:在直線中,令,得,
點,
在直線中,令,得,
點,,
由,得,
點,,
,
,
整理得,
,
,
由題意得:,
解得:,
,
,
,
,,,,,,
存在一點,使以、、、為頂點的四邊形是平行四邊形,
過點作直線平行于軸,過點作的平行線交于點,過點作的平行線交于點,過點、分別作、的平行線交于點.
①且,
是平行四邊形.此時,由點的平移規(guī)律可知P點向右平移6個單位得到,;
②且,
是平行四邊形.此時,由點的平移規(guī)律可知P點向左平移6個單位得到,;
③且,此時是平行四邊形.由點的平移規(guī)律可知A點向右平移個單位,向下平移得到,.
故答案為:,或,或,,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格中的每個小方格都是邊長為1的正方形,我們把以格點間的連線為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形.在建立平面直角坐標系后,點B的坐標為(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,畫出△A1B1C1的圖形并寫出點B1的坐標;
(2)把△ABC繞點C按順時針旋轉90°后得△A2B2C2,畫出△A2B2C2的圖形并寫出B2的坐標;
(3)把△ABC以點A為位似中心放大,使放大前后對應邊的比為1∶2,畫出△AB3C3的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小剛用如圖所示的兩個轉盤做配紫色游戲,游戲規(guī)則是:分別旋轉兩個轉盤,若其中一個轉盤轉出了紅色,另一個轉出了藍色,則可以配成紫色.此時小剛獲勝,否則小明獲勝.
(1)利用畫樹狀圖或列表法表示游戲所有可能出現(xiàn)的結果.
(2)這個游戲對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作第1個正方形A1B1C1C;延長C1B1交x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,過點D作DE⊥AB于點E,作DE⊥BC于點F,連接EF,求證:
(1)△ADE≌△CDF;
(2)若∠A=60°,AD=4,求△EDF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
解方程x4–7x2+12=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:
設x2=y,則x4=y2.
∴原方程可化為y2–7y+12=0.
∴a=1,b=–7,c=12.
∴△=b2–4ac=(–7)2–4×1×12=1.
∴y═=–.
解得y1=3,y2=4.
當y=3時,x2=3,x=±.
當y=4時,x2=4,x=±2.
∴原方程有四個根是:x1=,x2=–,x3=2,x4=–2.
以上方法叫換元法,達到了降次的目的,體現(xiàn)了數(shù)學的轉化思想,運用上述方法解答下列問題.
(1)解方程:(x2+x)2–5(x2+x)+4=0;
(2)已知實數(shù)a,b滿足(a2+b2)2–3(a2+b2)–10=0,試求a2+b2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化簡,得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;
(2)已知關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一張長10 dm,寬6 dm矩形紙板,將紙板四個角各剪去一個同樣的邊長為x dm的正方形,然后將四周突出部分折起,可制成一個無蓋方盒.
(1) 無蓋方盒盒底的長為______dm,寬為_____dm(用含x的式子表示)
(2) 若要制作一個底面積是32dm2的一個無蓋長方體紙盒,求剪去的正方形邊長x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CA=12cm,BC=12cm;動點P從點C開始沿CA以2cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BC以 2cm/s的速度向點C移動.如果P、Q、R分別從C、A、B同時移動,移動時間為t(0<t<6)s.
(1)∠CAB的度數(shù)是 ;
(2)以CB為直徑的⊙O與AB交于點M,當t為何值時,PM與⊙O相切?
(3)寫出△PQR的面積S隨動點移動時間t的函數(shù)關系式,并求S的最小值及相應的t值;
(4)是否存在△APQ為等腰三角形?若存在,求出相應的t值;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com