已知:如下圖,在平面直角坐標(biāo)系中,點(diǎn)M在x軸的負(fù)半軸上,以M為圓心畫(huà)半圓,交x軸于A,B兩點(diǎn),交y軸的正半軸于C,過(guò)C作半圓M的切線CP,交x軸于P,若AO∶OB=4∶1,PC+PA=12cm,

(1)求OC的長(zhǎng);

(2)在y軸的負(fù)半軸上是否存在點(diǎn)E,使以A,O,E為頂點(diǎn)的三角形與△POC相似,如果存在,求圖像經(jīng)過(guò)A,E兩點(diǎn)的一次函數(shù)解析式;若不存在,說(shuō)明理由.

答案:
解析:

  解:(1)連結(jié)AC、BC,因?yàn)锳B為直徑,

  所以AC⊥BC,又CO⊥AB,△AOC∽△ACB,

  所以=AO·AB,

  同理可證=BO·AB,

  

  因?yàn)镻C切圓M于C,所以∠BAC=∠PCB,又∠APC為公共角,所以△PAC∽△PCB,,即PA=2PC,

  由已知,PC+PA=12cm,所以PC+2PC=12cm,3PC=12cm,PC=4cm,PA=8cm.

  由切割線定理,有=PB·8,PB=2cm,AB=PA-PB=8-2=6cm.

  因?yàn)锳O∶OB=4∶1,所以O(shè)B=cm,AO=cm,又=AO·OB,所以O(shè)C=cm.

  (2)設(shè)點(diǎn)E存在,若∽△POC,

  

  所以=cm,即點(diǎn)(0,-),點(diǎn)A(-,0),設(shè)直線的解析式為y=kx+b,

  則有

  所以所求一次函數(shù)解析式為

  

  這時(shí)點(diǎn)(0,-),可求得的解析式為y

  所以符合條件的點(diǎn)E存在,有兩個(gè),所求一次函數(shù)解析式為y=-x-或y=-


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年重慶市中考數(shù)學(xué)試卷 題型:044

已知:如下圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x、y軸交于點(diǎn)BA,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.

(1)求該反比例函數(shù)的解析式;

(2)求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年重慶市中考數(shù)學(xué)試卷 題型:044

已知:如下圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OA=2,OC=3.過(guò)原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過(guò)點(diǎn)DDEDC,交OA于點(diǎn)E

(1)求過(guò)點(diǎn)E、D、C的拋物線的解析式;

(2)將∠EDC繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;

(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQAB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如下圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于二、四象限的A、B兩點(diǎn),與x軸交于C點(diǎn)。已知A(-2,m),B(n,-2),,則此一次函數(shù)的解析式為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(湖北黃石卷)數(shù)學(xué)(解析版) 題型:填空題

如下圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于二、四象限的A、B兩點(diǎn),與x軸交于C點(diǎn)。已知A(-2,m),B(n,-2),,則此一次函數(shù)的解析式為     .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案