【題目】探索三角形的內(nèi)角與外角平分線(三角形的外角是三角形的一邊與另一邊的延長(zhǎng)線所組成的角):
(1)如圖①,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,則∠BOC=________;此時(shí)∠A與∠BOC有怎樣的關(guān)系?試說(shuō)明理由.
(2)如圖②,BO平分∠ABC,CO平分∠ACE,若∠A=50°,則∠BOC=________;此時(shí)∠A與∠BOC有怎樣的關(guān)系?試說(shuō)明理由.
(3)如圖③,△ABC的外角∠CBE,∠BCF的平分線BO,CO相交于點(diǎn)O,若∠A=50°,則∠BOC=______;此時(shí)∠A與∠BOC有怎樣的關(guān)系?(不需說(shuō)明理由)
【答案】(1)115°,∠BOC=90°+∠A,.理由見(jiàn)解析;(2)25°,∠BOC=∠A,理由見(jiàn)解析;(3)65°,∠BOC=90°-∠A.
【解析】
(1)根據(jù)三角形內(nèi)角和定理得到∠BOC=180°-∠OBC-∠OCB,則2∠BOC=360°-2∠OBC-2∠OCB,再根據(jù)角平分線的定義得∠ABC=2∠OBC,∠ACB=2∠OCB,則2∠BOC=360°-∠ABC-∠ACB,易得∠BOC=90°+∠A.
(2)根據(jù)角平分線的定義得∠ACE=2∠OCE,∠ABC=2∠OBC,由三角形外角的性質(zhì)有∠OCE=∠BOC+∠OBC,∠ACE=∠ABC+∠A,則2∠BOC+2∠OBC=∠ABC+∠A,即可得到∠BOC=∠A;
(3)根據(jù)三角形內(nèi)角和定理和外角性質(zhì)可得到∠BOC=90°-∠A.
(1)115° ∠BOC=90°+∠A.理由如下:
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB.
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB).
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+∠A.
(2)25° ∠BOC=∠A.理由如下:
∵CO平分∠ACE,
∴∠ACE=2∠OCE.
∵∠OCE=∠OBC+∠BOC,
∠ACE=∠ABC+∠A,
∴∠ABC+∠A=2∠OBC+2∠BOC.
∵BO平分∠ABC,∴∠ABC=2∠OBC,
∴2∠OBC+∠A=2∠OBC+2∠BOC,
∴∠A=2∠BOC,即∠BOC=∠A.
(3)65° ∠BOC=90°-∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進(jìn)污水處理設(shè)備,新設(shè)備每小時(shí)處理污水量是原系統(tǒng)的1.5倍,原來(lái)處理1200m3污水所用的時(shí)間比現(xiàn)在多用10小時(shí).
(1)原來(lái)每小時(shí)處理污水量是多少m2?
(2)若用新設(shè)備處理污水960m3,需要多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,CD為AB邊上的高
(1) 如圖1,求證:∠BAC=2∠BCD
(2) 如圖2,∠ACD的平分線CE交AB于E,過(guò)E作EF⊥BC于F,EF與CD交于點(diǎn)G.若ED=m,BD=n,請(qǐng)用含有m、n的代數(shù)式表示△EGC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)A點(diǎn)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)B.
(1)求一次函數(shù)的解析式;
(2)判斷點(diǎn)C(4,-2)是否在該一次函數(shù)的圖象上,說(shuō)明理由;
(3)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數(shù)y= 圖象上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x軸正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個(gè)三角形按圖①方式擺放,使點(diǎn)E落在AB上,DE的延長(zhǎng)線交BC于點(diǎn)F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長(zhǎng)線于點(diǎn)F(如圖②),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫(xiě)出此時(shí)BF、EF與DE之間的等量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:E 是∠AOB 的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接 CD,且交 OE 于點(diǎn)F.
(1)求證:OD=OC;
(2)求證:OE 是 CD 的垂直平分線;
(3)若∠AOB=60°,請(qǐng)你探究 OE,EF 之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(﹣12a2b2c)(﹣abc2)2=___________;
(2)(3a2b﹣4ab2﹣5ab﹣1)(﹣2ab2)=___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com