【題目】如圖,在四邊形ACBD中,AC=6,BC=8,AD=2,BD=4,DE是△ABD的邊AB上的高,且DE=4,求△ABC的邊AB上的高.
【答案】△ABC的邊AB上的高為4.8.
【解析】
先根據(jù)勾股定理求出AE和BE,求出AB,根據(jù)勾股定理的逆定理求出△ABC是直角三角形,再求出面積,進(jìn)一步得到△ABC的邊AB上的高即可.
∵DE是AB邊上的高,
∴∠AED=∠BED=90°,
在Rt△ADE中,
由勾股定理,得AE=.
同理:在Rt△BDE中,由勾股定理得:BE=8,
∴AB=2+8=10,
在△ABC中,由AB=10,AC=6,BC=8,
得:AB2=AC2+BC2,
∴△ABC是直角三角形,
設(shè)△ABC的AB邊上的高為h,
則×AB×h=AC×BC,即:10h=6×8,
∴h=4.8,
∴△ABC的邊AB上的高為4.8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D是BC邊上任意一點,E在AC邊上,且AD=AE.
(1)若∠BAD=40°,求∠EDC的度數(shù);
(2)若∠EDC=15°,求∠BAD的度數(shù);
(3)根據(jù)上述兩小題的答案,試探索∠EDC與∠BAD的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,G為BC中點,點E在AD邊上,且∠1=∠2.
(1)求證:E是AD中點;
(2)若F為CD延長線上一點,連接BF,且滿足∠3=∠2,求證:CD=BF+DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鼎豐超市以固定進(jìn)價一次性購進(jìn)保溫杯若干個,11月份按一定售價銷售,銷售額為1800元,為擴(kuò)大銷量,減少庫存,12月份在11月份售價基礎(chǔ)上打9折銷售,結(jié)果銷售量增加50個,銷售額增加630元.
(1)求鼎豐超市11月份這種保溫杯的售價是多少元?
(2)如果鼎豐超市11月份銷售這種保溫杯的利潤為600元,那么該鼎豐超市12月份銷售這種保溫杯的利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標(biāo)分別是.
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出關(guān)于軸對稱的;
(3)請在軸上求作一點,使的周長最小,并寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小華和小夏玩擲骰子游戲,他們約定:他們用同一枚質(zhì)地均勻的骰子各擲一次, 如果兩次擲的骰子的點數(shù)相同則小華獲勝:如果兩次擲的骰子的點數(shù)的和是6則小夏獲勝.
(1)請您列表或畫樹狀圖列舉出所有可能出現(xiàn)的結(jié)果;
(2)請你判斷這個游戲?qū)λ麄兪欠窆讲⒄f明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com