如圖所示,AB=AD,∠ABC=∠ADC=90°,則①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正確的結(jié)論有


  1. A.
    ①②
  2. B.
    ①②③
  3. C.
    ①②③④
  4. D.
    ②③
B
分析:本題的關(guān)鍵是證明Rt△ABC≌Rt△ADC,易求解.
解答:在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).
所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.
故①②正確;
在△ABD中,AB=AD,∠BAO=∠DAO,
所以BO=DO,AO⊥BD,即AC垂直平分BD.
故③正確;
不能推出∠ABO=∠CBO,故④不正確.
故選B.
點(diǎn)評(píng):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等.難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖所示,AB=AD,∠1=∠2,添加一個(gè)適當(dāng)?shù)臈l件,使△ABC≌△ADE,則需要添加的條件是
AC=AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖所示,AB=AD,∠ABC=∠ADC=90°,則①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)二模)如圖所示,AB=AD,∠1=∠2,添加一個(gè)適當(dāng)?shù)臈l件,使△ABC≌△ADE(不再添加輔助線,不再標(biāo)注其他字母).
(1)你添加的條件是
AC=AE(答案不唯一)
AC=AE(答案不唯一)
;
(2)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AB=AD,AC=AE,BC=DE,∠B=28°,∠E=95°,∠EAB=20°,則∠BAD=
77
77
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AB=AD,AD∥BC,∠BDC=90°,∠ABC=∠DCB,則∠ADB等于
30
30
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案