如圖,直線l經(jīng)過點A(4,0)和點B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內(nèi)相交于點P,若△AOP的面積為
9
2
,求二次函數(shù)的解析式.
因為直線l與兩坐標軸分別交于點A(4,0),B(0,4),
所以直線l的函數(shù)表達式為y=-x+4,
設(shè)點P的坐標為(m,n),
因為△AOP的面積為
9
2
,
所以
1
2
×4×n=
9
2

所以n=
9
4

因為點P在直線l上,
所以-m+4=
9
4
,
m=
7
4
,
所以P(
7
4
,
9
4
)

因為點P在拋物線y=ax2上,
所以
9
4
=(
7
4
)2a
,
a=
36
49
,
所以二次函數(shù)的解析式為y=
36
49
x2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+b經(jīng)過點A(4,4)和點B(0,-4).C是x軸上的一個動點.
(1)求拋物線的解析式;
(2)若點C在以AB為直徑的圓上,求點C的坐標;
(3)將點A繞C點逆時針旋轉(zhuǎn)90°得到點D,當點D在拋物線上時,求出所有滿足條件的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC的兩邊在坐標軸上,且A(0,-2),AB=4,連接AC,拋物線y=x2+bx+c經(jīng)過A,B兩點.點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿AO,OC,CB邊向點B移動,當其中一個點到達終點時另一個點也停止移動.
(1)求拋物線的解析式;
(2)當P運動到OC上時,設(shè)點P的移動時間為t秒,當PQ⊥AC時,求t的值;
(3)當PQAC時,對于拋物線對稱軸上一點H,∠HOQ>∠POQ,求點H的縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線:y=
1
2
x2+bx+c
與x軸交于A、B(A在B左側(cè)),頂點為C(1,-2),
(1)求此拋物線的關(guān)系式;并直接寫出點A、B的坐標.
(2)求過A、B、C三點的圓的半徑.
(3)在拋物線上找點P,在y軸上找點E,使以A、B、P、E為頂點的四邊形是平行四邊形,求點P、E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,現(xiàn)將一塊腰長為
5
的等腰直角三角板ABC放在第三象限,斜靠在兩坐標軸上,且點A(0,-2),直角頂點C在x軸的負半軸上(如圖所示),拋物線y=ax2+ax+2經(jīng)過點B.
(1)點C的坐標為______,點B的坐標為______;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-1,0),B(2,0),C(0,-2),那么這個二次函數(shù)的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校課外活動小組準備利用學(xué)校的一面墻,用長為30米的籬笆圍成一個矩形生物苗圃園.
(1)若墻長為18米(如圖所示),當垂直于墻的一邊的長為多少米時,這個苗圃園的面積等于88平方米?
(2)當垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,張大爺要圍成一個矩形ABCD花圃.花圃的一邊AD利用足夠長的墻,另三邊恰好用總長為36米的籬笆圍成.設(shè)AB的長為x米,矩形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當x為何值時,S有最大值?并求出最大值.
[參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當x=-
b
2a
時,y最大(小)值=
4ac-b2
4a
].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某海參養(yǎng)殖公司經(jīng)市場調(diào)研發(fā)現(xiàn),每周該公司銷售的海參量y(千克)與單價x(元/千克)之間存在如圖所示的一次函數(shù)關(guān)系.
(1)根據(jù)圖象求y與x之間的函數(shù)表達式;
(2)從經(jīng)濟效益來看,你認為該公司如何制定海參單價,能使每周海參的銷售收入最高?每周海參的最高銷售收入是多少?

查看答案和解析>>

同步練習(xí)冊答案