如圖,正方形ABCD的對(duì)角線交于點(diǎn)0,∠BAC的平分線交BD于點(diǎn)E,若正方形的邊長(zhǎng)是1cm,則DE的長(zhǎng)是


  1. A.
    數(shù)學(xué)公式
  2. B.
    1cm
  3. C.
    2cm
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)正方形的對(duì)角線性質(zhì)可得∠ABE=∠BAC=∠DAC=45°;根據(jù)角平分線可得∠BAE=∠EAC=22.5°,∠AED=∠ABE+∠BAE=67.5°=∠DAE,所以DE=AD.
解答:∵ABCD為正方形,
∴∠ABE=∠BAC=∠DAC=45°.
∵AE平分∠BAC,
∴∠BAE=∠EAC=22.5°.
∴∠DAE=45°+22.5°=67.5°;
∠AED=∠ABE+∠BAE=45°+22.5°=67.5°.
∴∠DAE=∠AED,
∴DE=AD=1.
故選B.
點(diǎn)評(píng):此題考查正方形的性質(zhì)和等腰三角形的判定,計(jì)算出具體角度是解題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案