已知:如圖,梯形ABCD中,ADBC,∠B=60°,∠C=30°,AD=2,BC=8.求:梯形兩腰AB、CD的長.
作DEAB交BC于點(diǎn)E,則四邊形ABED是平行四邊形.
∴AB=DE,AD=BE,∠DEC=∠B=60°,
∵∠C=30°,
∴∠EDC=180°-60°-30°=90°,
∵CE=BC-BE=BC-AD=6,
∴DE=3,CD=3
3
,
即AB=3,CD=3
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中AB=CD、AC=3,則BD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,ADBC,∠A=120°,AD=8,BC=14,則梯形的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCD中,ADBC.AB=DC=AD=6,∠ABC=60°,點(diǎn)E、F分別在AD、DC上(點(diǎn)E與A、D不重合);且∠BEF=120°,設(shè)AE=x,DF=y.
(1)求BC邊的長;
(2)求出y關(guān)于x的函數(shù)關(guān)系;
(3)利用配方法求x為何值時,y有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖;在等腰梯形ABCD中,AD=2,BC=4,DC=
5
,高DF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,∠B=90°,AD=6,BC=8,AB=3
3
,點(diǎn)M是BC的中點(diǎn).點(diǎn)P從點(diǎn)M出發(fā)沿MB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,到達(dá)點(diǎn)B后立刻以原速度沿BM返回;點(diǎn)Q從點(diǎn)M出發(fā)以每秒1個單位長的速度在射線MC上勻速運(yùn)動.在點(diǎn)P,Q的運(yùn)動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點(diǎn)P,Q同時出發(fā),當(dāng)點(diǎn)P返回到點(diǎn)M時停止運(yùn)動,點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動的時間是t秒(t>0).
(1)設(shè)PQ的長為y,在點(diǎn)P從點(diǎn)M向點(diǎn)B運(yùn)動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍);
(2)當(dāng)BP=1時,求△EPQ與梯形ABCD重疊部分的面積;
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達(dá)到最大值,請回答:該最大值能否持續(xù)一個時段?若能,直接寫出t的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰△ABC中,AB=AC=13,BC=10
(1)如圖①,△ABC的面積=______,腰AC上的高BD=______;
(2)如圖②,P是底邊BC上任意一點(diǎn),PE⊥AB于E,PF⊥AC于F,連接AP,不難發(fā)現(xiàn):△ABP的面積+△ACP的面積=△ABC的面積,據(jù)此式,你能求出PE+PF等于多少嗎?你有什么發(fā)現(xiàn)?
(3)如圖③四邊形BCGH是形狀、大小一定的等腰梯形,點(diǎn)P是下底BC上一動點(diǎn),試問:點(diǎn)P到兩腰的距離之和是否為一定值?簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在梯形ABCD中,ADBC,AB=CD,BC=8,∠B=60°,點(diǎn)M是邊BC的中點(diǎn),點(diǎn)E、F分別是邊AB、CD上的兩個動點(diǎn)(點(diǎn)E與點(diǎn)A、B不重合,點(diǎn)F與點(diǎn)C、D不重合),且∠EMF=120°.
(1)求證:ME=MF;
(2)試判斷當(dāng)點(diǎn)E、F分別在邊AB、CD上移動時,五邊形AEMFD的面積的大小是否會改變,請證明你的結(jié)論;
(3)如果點(diǎn)E、F恰好是邊AB、CD的中點(diǎn),求邊AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中,ADBC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,則DE=______.

查看答案和解析>>

同步練習(xí)冊答案