如圖所示,AB為⊙O的直徑,AD平分∠BAC交⊙O于點D,DE⊥AC交AC的延長線于點E,F(xiàn)B是⊙O的切線交AD的延長線于點F.求證:DE是⊙O的切線.

證明:連OD,如圖:
∵AD平分∠BAC,
∴∠1=∠2,
又∵OD=OA,得∠2=∠3,
∴∠1=∠3,
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線.
分析:由AD平分∠BAC,得到∠1=∠2,而OD=OA,∠2=∠3,所以∠1=∠3,則有OD∥AE,而DE⊥AC,所以O(shè)D⊥DE.
點評:本題考查了圓的切線的判定方法.經(jīng)過半徑的外端點與半徑垂直的直線是圓的切線.當(dāng)已知直線過圓上一點,要證明它是圓的切線,則要連接圓心和這個點,證明這個連線與已知直線垂直即可;當(dāng)沒告訴直線過圓上一點,要證明它是圓的切線,則要過圓心作直線的垂線,證明垂線段等于圓的半徑.同時考查了平行線分線段成比例定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB為半圓O的直徑,C、D、E、F是
AB
上的五等分點,P為直徑AB上的任意一點,若AB=4,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,AB為圓O的弦,OC垂直AB于點C,OC=3,若圓O的半徑為5,則弦AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•孝南區(qū)一模)已知,如圖所示,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交于⊙O于點E,∠BAC=45°,給出以下四個結(jié)論:
①BD=CD;②∠EBC=22.5°;③AE=2EC;④
AE
=2
DE
AE
,
DE
為劣。
其中正確結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,AB為⊙O的直徑,AC為弦,OD∥BC交AC于D,若AB=20cm,∠A=30°,則OD=
5cm
5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,AB為⊙O的直徑,D為
BC
中點,連接BC交AD于E,DG⊥AB于G.
(1)求證:BD2=AD•DE;
(2)如果tanA=
3
4
,DG=8,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案