【題目】閱讀下列材料:
∵,,,……,
∴
=
= =.
解答下列問題:
(1)在和式中,第6項為______,第n項是__________.
(2)上述求和的想法是通過逆用分式減法法則,將和式中的各分?jǐn)?shù)轉(zhuǎn)化為兩個數(shù)之差,使得除首末兩項外的中間各項的和為_______,從而達(dá)到求和的目的.
(3)受此啟發(fā),請你解下面的方程:
.
【答案】(1) ,;(2)0 (3)2
【解析】
(1)根據(jù)式子的特點可知:第n個式子中分子是兩個連續(xù)
的奇數(shù)相乘,第n個式子,第一個奇數(shù)是從1開始第n個奇
數(shù),據(jù)此即可寫出兩個式子;(2)從上面多個式子觀察即可得出;(3)參考(1)中的結(jié)論將原式方程變形然后化簡,再結(jié)合分式方程的一般解法進(jìn)行求解.
(1)觀察題目信息,可得第6項為,第n項為.
(2)從上面多個式子觀察即可得出中間各項的和為0.
(3)分式方程變形,得
)=,
整理得
=
方程兩邊同乘2x(x+9),得
2x(x+9)-2x=9x
解得
x=2
故方程的解為x=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,D是AB的垂直平分線上兩點,延長AC,DB交于點E,AF∥BC交DE于點F.
求證:(1)AB是∠CAF的角平分線;
(2)∠FAD = ∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:拋物線 與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點P為線段BC上一點,過點P作直線ι⊥x軸于點F,交拋物線 于點E.
(1)求A、B、C三點的坐標(biāo);
(2)當(dāng)點P在線段BC上運(yùn)動時,求線段PE長的最大值;
(3)當(dāng)PE取最大值時,把拋物線 向右平移得到拋物線 ,拋物線 與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線 應(yīng)向右平移幾個單位長度可得到拋物線 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題:
(1)(﹣1)2018+3﹣2﹣(π﹣3.14)0
(2)(x+3)2﹣x2
(3)(x+2)(3x﹣y)﹣3x(x+y)
(4)(2x+y+1)(2x+y﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一工程招標(biāo)時,接到甲.乙兩工程隊的投標(biāo)書,每施工一天,需付甲工程隊工程款1.5萬元,乙工程隊工程款1.1萬元.目前有三種施工方案:
方案一:甲隊單獨完成此項工程剛好如期完成;
方案二:乙隊單獨完成此項工程比規(guī)定日期多5天;
方案三:若甲.乙兩隊合作4天,剩下的工程由乙隊單獨做也正好如期完成.
哪一種方案既能如期完工又最節(jié)省工程款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列要求,解答相關(guān)問題.
(1)請補(bǔ)全以下求不等式﹣2x2﹣4x>0的解集的過程.
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點,標(biāo)示所需,當(dāng)y=0時,求得方程﹣2x2﹣4x=0的解為( );并用鋸齒線標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點.
(1)根據(jù)上述定義,當(dāng)m=2,n=2時,如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時,如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M,
①求出點M隨線段BC運(yùn)動所圍成的封閉圖形的周長;
②點D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點G在菱形對角線AC上運(yùn)動,角的兩邊分別交邊BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如圖甲,當(dāng)頂點G運(yùn)動到與點A重合時,求證:EC+CF=BC;
(2)知識探究:
①如圖乙,當(dāng)頂點G運(yùn)動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);
②如圖丙,在頂點G運(yùn)動的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;
(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當(dāng)>2時,求EC的長度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題
(1)一個暖瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定: 這兩種商品都打九折;乙商場規(guī)定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com