【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2 .
(1)求y與x之間的函數(shù)關系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.
【答案】
(1)
解:根據(jù)題意可知,橫彩條的寬度為 xcm,
∴y=20× x+2×12x﹣2× xx=﹣3x2+54x,
即y與x之間的函數(shù)關系式為y=﹣3x2+54x;
(2)
解:根據(jù)題意,得:﹣3x2+54x= ×20×12,
整理,得:x2﹣18x+32=0,
解得:x1=2,x2=16(舍),
∴ x=3,
答:橫彩條的寬度為3cm,豎彩條的寬度為2cm.
【解析】本題主要考查根據(jù)實際問題列函數(shù)關系式及一元二次方程的實際應用能力,數(shù)形結(jié)合根據(jù)“三條彩條面積=橫彩條面積+2條豎彩條面積﹣橫豎彩條重疊矩形的面積”列出函數(shù)關系式是解題的關鍵.(1)由橫、豎彩條的寬度比為3:2知橫彩條的寬度為 xcm,根據(jù):三條彩條面積=橫彩條面積+2條豎彩條面積﹣橫豎彩條重疊矩形的面積,可列函數(shù)關系式;(2)根據(jù):三條彩條所占面積是圖案面積的 ,可列出關于x的一元二次方程,整理后求解可得.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( 。
A.∠E=2∠K
B.BC=2HI
C.六邊形ABCDEF的周長=六邊形GHIJKL的周長
D.S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了打造森林城市,樹立城市新地標,實現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學想用一些測量工具和所學的幾何知識測量“望月閣”的高度,來檢驗自己掌握知識和運用知識的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點與“望月閣”底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進行測量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,小亮看著鏡面上的標記,他來回走動,走到點D時,看到“望月閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進行了第二次測量,方法如下:如圖,小亮從D點沿DM方向走了16米,到達“望月閣”影子的末端F點處,此時,測得小亮身高FG的影長FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出“望月閣”的高AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個公共自行車站點、配置720輛公共自行車.今后將逐年增加投資,用于建設新站點、配置公共自行車.預計2018年將投資340.5萬元,新建120個公共自行車站點、配置2205輛公共自行車.
(1)請問每個站點的造價和公共自行車的單價分別是多少萬元?
(2)請你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④S△ABC=4S△ADF . 其中正確的有( )
A.1個
B.2 個
C.3 個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,乙商品的單價是甲商品單價的2倍,購買240元甲商品的數(shù)量比購買300元乙商品的數(shù)量多15件,求兩種商品單價各為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點C恰好落在AD邊上的點P處,則FP= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△ABD中,AD與BC相交于O點,∠1=∠2,請你添加一個條件(不再添加其它線段,不再標注或使用其他字母),使AC=BD,并給出證明.
你添加的條件是?并證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com