(2012•南崗區(qū)一模)若一個圓錐的側(cè)面展開圖是半徑為6cm的半圓形,則這個圓錐的底面半徑是
3
3
cm.
分析:首先求得圓錐的側(cè)面展開圖的弧長,即圓錐的底面周長,然后根據(jù)圓周長公式即可求解.
解答:解:圓錐的側(cè)面展開圖的弧長是:6πcm,設(shè)圓錐的底面半徑是r,則2πr=6π,
解得:r=3cm.
故答案是:3.
點評:本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)一模)如圖,在⊙0中,點A在⊙0上,弦BC⊥OA,垂足為點D且OD=AD,連接AC、AB.則∠BAC的度數(shù)為
120°
120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)一模)如圖,邊長為1的正方形ABCD繞點A旋轉(zhuǎn)得到正方形AB1ClD1,若AB1落在對角線AC上,連接A0,則∠AOB1等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)一模)方程
3
x-3
=
4
x
的解是
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)一模)已知A(x1,y1)B(x2,y2)是反比例函數(shù)y=-
1x
圖象上的兩個點,y1<y2<0則x1與x2的大小關(guān)系為
(用“>”或“<”填寫)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南崗區(qū)一模)王大爺要圍成一個如圖所示的矩形ABCD花圃.花圃的一邊利用20米長的墻,另三邊用總長為36米的籬笆恰好圍成.設(shè)A8邊的長為x米,BC的長為y米,且BC>AB.
(1)求y與x之間的函數(shù)關(guān)系式(要求直接寫出自變量石的取值范圍);
(2)當(dāng)x是多少米時,花圃面積S最大?最大面積是多少?
【參考公式:當(dāng)x=-
b
2a
時,二次函數(shù)y=ax2+bx+c(a≠0)有最。ù螅┲
4ac-b2
4a

查看答案和解析>>

同步練習(xí)冊答案