如果一個數(shù)等于它的不包括自身的所有因數(shù)之和,那么這個數(shù)就叫完全數(shù).例如,6的不包括自身的所有因數(shù)為1,2,3,而且6=1+2+3,所以6是完全數(shù).大約2200多年前,歐幾里德提出:如果2n-1是質數(shù),那么2n-1(2n-1)是一個完全數(shù).請你根據(jù)這個結論寫出6之后的下一個完全數(shù)   
【答案】分析:直接利用題中所給公式計算即可.當n=2時2n-1(2n-1)=6,當n=3時,2n-1-1=3,是質數(shù),所以2n-1(2n-1)=4×7=28,故6之后的下一個完全數(shù)是28.
解答:解:由題可知:2n-1(2n-1)=6,得n=2,由此可知下一個數(shù)是當n=3時完全數(shù),即2n-1(2n-1)=4×7=28.
點評:主要考查了學生的分析、總結、歸納能力,規(guī)律型的習題一般是從所給的數(shù)據(jù)和運算方法進行分析,從特殊值的規(guī)律上總結出一般性的規(guī)律.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如果一個數(shù)等于它的不包括自身的所有因數(shù)之和,那么這個數(shù)就叫完全數(shù)、例如,6的不包括自身的所有因數(shù)為1,2,3、而且6=1+2+3,所以6是完全數(shù)、大約2200多年前,歐幾里德提出:如果2n-1是質數(shù),那么2n-1•(2n-1)是一個完全數(shù),請你根據(jù)這個結論寫出6之后的下一個完全數(shù)是
28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如果一個數(shù)等于它的不包括自身的所有因數(shù)之和,那么這個數(shù)就叫完全數(shù).例如,6的不包括自身的所有因數(shù)為1,2,3,而且6=1+2+3,所以6是完全數(shù).大約2200多年前,歐幾里德提出:如果2n-1是質數(shù),那么2n-1(2n-1)是一個完全數(shù).請你根據(jù)這個結論寫出6之后的下一個完全數(shù)
28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個數(shù)等于它的不包括自身的所有因數(shù)之和,那么這個數(shù)就叫完全數(shù)、例如,6的不包括自身的所有因數(shù)為1,2,3、而且6=1+2+3,所以6是完全數(shù)、大約2200多年前,歐幾里德提出:如果2n-1是質數(shù),那么2n-1•(2n-1)是一個完全數(shù),請你根據(jù)這個結論寫出6之后的下一個完全數(shù)是
28
28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個數(shù)等于它的不包括自身的所有因數(shù)之和,那么這個數(shù)就叫完全數(shù). 例如,6的不包括自身的所有因數(shù)為1、2、3,而且6=1+2+3,所以6是完全數(shù). 大約2200多年前,歐幾里德提出:如果2n-1是質數(shù),那么2n-1·(2n-1)是一個完全數(shù). 請你根據(jù)這個結論寫出6之后的下一個完全數(shù)是             .

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個數(shù)等于它的不包括自身的所有因數(shù)之和,那么這個數(shù)就叫完全數(shù).例如,6的不包括自身的所有因數(shù)為1,2,3.而且,所以6是完全數(shù).大約2200多年前,歐幾里德提出:如果是質數(shù),那么是一個完全數(shù),請你根據(jù)這個結論寫出6之后的下一個完全數(shù)是             

 

查看答案和解析>>

同步練習冊答案