(2012•梁子湖區(qū)模擬)如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)若點M是
AB
的中點,CM交AB于點N,AB=8,求MN•MC的值.
分析:(1)利用已知得出∠PCB+∠OCB=90°,進而求出∠PCO=90°,利用切線的判定定理求出即可;
(2)首先證明△MBN∽△MCB,再利用相似的性質(zhì)求出△MBN∽△MCB,進而得出MN•MC=BM2的值.
解答:解:(1)∵OA=OC,
∴∠A=∠ACO,
∴∠COB=2∠A,
又∵∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.     
又∵AB是⊙O的直徑,
∴∠ACB=90°,即∠ACO+∠OCB=90°,
∴∠PCB+∠OCB=90°,即∠PCO=90°,
而OC是⊙O的半徑,
∴PC是⊙O的切線.

(2)連接MA,MB,
∵點M是
AB
的中點,
AM
=
BM

∴∠BCM=∠ABM,而∠BMN=∠BMC,
∴△MBN∽△MCB,
BM
MC
=
MN
BM
,
又∵AB是⊙O的直徑,
AM
=
BM

∴∠AMB=90°,AM=BM.
∵AB=8,
∴BM=4
2
.                                     
∴MN•MC=BM2=32.
點評:此題主要考查了切線的判定與相似三角形的判定與性質(zhì),此題是中考中重點題型同學們應重點掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•梁子湖區(qū)模擬)將代數(shù)式x2+4x-1化成(x+p)2+q的形式為
(x+2)2-5
(x+2)2-5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梁子湖區(qū)模擬)如圖,已知函數(shù)y=-
3
x
與y=ax2+bx(a>0,b>0)的圖象交于點P,點P的縱坐標為1,則關(guān)于x的不等式ax2+bx+
3
x
>0的解為
x<-3或x>0
x<-3或x>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梁子湖區(qū)模擬)如圖,DE是△ABC的中位線,M是DE的中點,CM的延長線交AB于N,且S△ABC=24,那么S四邊形ANME-S△DMN=
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梁子湖區(qū)模擬)tan60°=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梁子湖區(qū)模擬)如圖,等腰梯形ABCD的底邊AD在x軸上,頂點C在y軸正半軸上,B(4,2),一次函數(shù)y=kx-1的圖象平分它的面積,關(guān)于x的函數(shù)y=mx2-(3m+k)x+2m+k的圖象與坐標軸只有兩個交點,則m的值為(  )

查看答案和解析>>

同步練習冊答案