【題目】一般地,從n邊形的一個頂點出發(fā),可以作(n-3)條對角線,它們將n邊形分為個三角形,因此n邊形的內(nèi)角和是個三角形的內(nèi)角的和,即n邊形的內(nèi)角和等于.

【答案】(n-2);(n-2);(n-2)×180°
【解析】解:一般地,從n邊形的一個頂點出發(fā),可以作(n-3)條對角線,它們將n邊形分為個(n-2)個三角形,因此n邊形的內(nèi)角和是(n-2)個三角形的內(nèi)角的和,即n邊形的內(nèi)角和等于(n-2)×180°。
故答案為:(n-2);(n-2);(n-2)×180°.根據(jù)多邊形的內(nèi)角和定理推導(dǎo)得出答案。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(EBD上任意一點),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQDC重合,△PQM和△DCFDC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PRBC重合,△PRN和△BCGBC同側(cè))

則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:14a2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A6,0)、B0)兩點,與y軸交于點C,過拋物線上點M13)作MNx軸于點N,連接OM

1)求此拋物線的解析式;

2)如圖1,將△OMN沿x軸向右平移t個單位(0t5)到△OMN′的位置,MN′、MO′與直線AC分別交于點E、F

①當(dāng)點FMO′的中點時,求t的值;

②如圖2,若直線MN′與拋物線相交于點G,過點GGHMO′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個三階幻方,方格表中每一行每一列及兩條對角線中所填數(shù)的和均相等,請把余下的空格補充完整.

2

-3

1

-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1和2,在△ABC中,AB=13,BC=14,BH=5.

探究:如圖1,AH⊥BC于點H,則AH= ,AC= ,△ABC的面積 ;

拓展:如圖2,點D在AC上(可與點A,C重合),分別過點A.C作直線BD的垂線,垂足為E,F(xiàn),設(shè)BD=x,AE=m,CF=n(當(dāng)點D與點A重合時,我們認(rèn)為

(1)用含x,m,n的代數(shù)式表示;

(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;

(3)對給定的一個x值,有時只能確定唯一的點D,直接寫出這樣的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正方形紙片剪去四個大小形狀一樣的小正方形,然后將其中一個小正方形再按同樣的方法剪成四個小正方形,再將其中一個小正方形剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進(jìn)行下去.

1填表:

2)如果剪了100次,共剪出多少個小正方形?

3)如果剪n次,共剪出多少個小正方形?

4)如果要剪出100個正方形,那么需要剪多少次?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線B(﹣26),C2,2)兩點

1)試求拋物線的解析式;

2)記拋物線頂點為D,求△BCD的面積;

3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果ab=0,那么一定有(

A. a=b=0 B. a=0 C. a、b至少有一個為0 D. a、b最多有一個為0

查看答案和解析>>

同步練習(xí)冊答案