如圖,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等邊三角形.

(1)求∠ABC的度數(shù).

(2)以點A為中心,把△ABD順時針旋轉60°,

畫出旋轉后的圖形.

(3)求BD的長度.

【解析】(1)利用正切的知識可得出答案.

(2)根據旋轉角度、旋轉中心、旋轉方向找出各點的對稱點,順次連接即可;

(3)根據旋轉的性質可得△ACE≌△ADB,從而確定∠EBC=90°,然后利用勾股定理即可解答

 

(1)Rt△ABC中-------------------4分

(2)如圖-----------------3分

(3)   方法1 :   連接BE.

由(2)知:△ACE≌△ADB

AE=AB,∠BAE=60°,BD=EC

∴∠EBC=90°又BC=2AC=4

∴Rt△EBC中,EC=

----------------------------------------  5分

方法2:過點D作DF⊥BC,交BC延長線于點F,

則求得DF=  BF =5,

      按方法1 相應給分

方法3:過點D作DG⊥BA,交BA延長線于點G,按照方法1給分

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案