下列各組長(zhǎng)度的3條線段,不能構(gòu)成三角形的是( )
A.3cm,5cm,10cm
B.5cm,4cm,9cm
C.4cm,6cm,9cm
D.2cm,3cm,4cm
【答案】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”進(jìn)行分析.
解答:解:A、3+5<10,則不能構(gòu)成三角形;
B、5+4=9,則不能構(gòu)成三角形;
C、4+6>9,則能構(gòu)成三角形;
D、2+3>4,則能構(gòu)成三角形;
故選:A、B.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是三角形的三邊關(guān)系,判斷能否組成三角形的簡(jiǎn)便方法是看其中較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù)即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們學(xué)習(xí)了“弧、弦、圓心角的關(guān)系”,實(shí)際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個(gè)圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對(duì)應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說(shuō)成圓心到弦的垂線段的長(zhǎng)度.)
請(qǐng)直接運(yùn)用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問(wèn)題.
如圖(2),O是∠EPF的平分線上一點(diǎn),以點(diǎn)O為圓心的圓與角的兩邊分別交子點(diǎn)A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點(diǎn)P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請(qǐng)說(shuō)明理由;若成立,請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們學(xué)習(xí)了“弧、弦、圓心角的關(guān)系”,實(shí)際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個(gè)圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對(duì)應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說(shuō)成圓心到弦的垂線段的長(zhǎng)度.)
請(qǐng)直接運(yùn)用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問(wèn)題.
如圖(2),O是∠EPF的平分線上一點(diǎn),以點(diǎn)O為圓心的圓與角的兩邊分別交子點(diǎn)A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點(diǎn)P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請(qǐng)說(shuō)明理由;若成立,請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們學(xué)習(xí)了“弧、弦、圓心角的關(guān)系”,實(shí)際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個(gè)圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對(duì)應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說(shuō)成圓心到弦的垂線段的長(zhǎng)度.)
請(qǐng)直接運(yùn)用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問(wèn)題.
如圖(2),O是∠EPF的平分線上一點(diǎn),以點(diǎn)O為圓心的圓與角的兩邊分別交子點(diǎn)A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點(diǎn)P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請(qǐng)說(shuō)明理由;若成立,請(qǐng)加以證明.

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案