(2009•廣安)為了增加游人觀賞花園風景的路程,將平行四邊形花園中形如圖1的恒寬為a米的直路改為形如圖2恒寬為a米的曲路,道路改造前后各余下的面積(即圖中陰影部分面積)分別記為S1和S2,則S1    S2(填“>”“=”或“<”).
【答案】分析:因為兩個圖形道路的高、寬都相等,所以道路的面積相等,故陰影部分面積也相等.
解答:解:根據(jù)道路計算面積的方法,道路面積=高×寬,兩個圖形道路長度有變化,高、寬都相等,故S1=S2
點評:此題主要考查平行四邊形面積計算方法,平行四邊形的面積等于平行四邊形的邊長與該邊上的高的積.即S=a•h.其中a可以是平行四邊形的任何一邊,h必須是a邊與其對邊的距離,即對應的高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設BD的長為m,△CDE的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設BD的長為m,△CDE的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省汕尾市陸豐市玉燕中學九年級(下)月考數(shù)學試卷(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設BD的長為m,△CDE的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省梅州市中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設BD的長為m,△CDE的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省河源市中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設BD的長為m,△CDE的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案