【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)連接CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是y軸上的一點(diǎn),點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE,當(dāng)△PCE的面積最大時(shí),求KM+PM的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y=x2﹣2x﹣3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F,在新拋物線y′的對(duì)稱(chēng)軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)直線AE的解析式為y=x+1;(2)當(dāng)△PCE的面積最大時(shí),KM+PM的最小值為;(3)點(diǎn)Q的坐標(biāo)為(3,-4-)或(3,-4+)或(3,6)或(3,).
【解析】
(1)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B、E的坐標(biāo),根據(jù)點(diǎn)A、E的坐標(biāo),利用待定系數(shù)法即可求出直線AE的解析式;
(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)C、E的坐標(biāo),利用待定系數(shù)法即可求出直線CE的解析式,過(guò)點(diǎn)P作PP′∥y軸,交直線CE于點(diǎn)P′,作點(diǎn)K關(guān)于y軸對(duì)稱(chēng)點(diǎn)K′,連接PK′交y軸于點(diǎn)M,此時(shí)PM+KM取最小值PK′,設(shè)點(diǎn)P的坐標(biāo)為(x,x2﹣2x﹣3),則點(diǎn)P′的坐標(biāo)為(x,2x﹣3),PP′=﹣x2+4x,根據(jù)三角形面積公式可得出S△PCE=﹣2x2+8x,配方后可得出:當(dāng)x=2時(shí),△PCE的面積取最大值,此時(shí)點(diǎn)P的坐標(biāo)為(2,﹣3),由點(diǎn)B、C的坐標(biāo)可得出點(diǎn)K、K′的坐標(biāo),再利用兩點(diǎn)間的距離公式可求出當(dāng)△PCE的面積最大時(shí)KM+PM的最小值;
(3)根據(jù)平移的性質(zhì)結(jié)合平移后的拋物線過(guò)點(diǎn)D可求出平移后拋物線的解析式,進(jìn)而可求出其頂點(diǎn)F的坐標(biāo),由點(diǎn)C、E的坐標(biāo)可求出點(diǎn)G的坐標(biāo),設(shè)點(diǎn)Q的坐標(biāo)為(3,a),則GF==,FQ=|a+4|,GQ==,根據(jù)等腰三角形的性質(zhì)分GF=FQ、GF=GQ、FQ=GQ三種情況求出a的值,此題得解.
(1)當(dāng)y=0時(shí),有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0).
當(dāng)x=4時(shí),y=x2﹣2x﹣3=5,∴E(4,5).
設(shè)直線AE的解析式為y=kx+b(k≠0),將A(﹣1,0)、E(4,5)代入y=kx+b中,得:,解得:,∴直線AE的解析式為y=x+1.
(2)當(dāng)x=0時(shí),y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),設(shè)直線CE的解析式為y=mx﹣3(m≠0),將點(diǎn)E(4,5)代入y=mx﹣3中,得:
4m﹣3=5,解得:m=2,∴直線CE的解析式為y=2x﹣3.
在圖2中,過(guò)點(diǎn)P作PP′∥y軸,交直線CE于點(diǎn)P′,作點(diǎn)K關(guān)于y軸對(duì)稱(chēng)點(diǎn)K′,連接PK′交y軸于點(diǎn)M,此時(shí)PM+KM取最小值PK′.
設(shè)點(diǎn)P的坐標(biāo)為(x,x2﹣2x﹣3),則點(diǎn)P′的坐標(biāo)為(x,2x﹣3),PP′=﹣x2+4x,∴S△PCE=PP′(xE﹣xC)=﹣2x2+8x=﹣2(x﹣2)2+8,∴當(dāng)x=2時(shí),△PCE的面積取最大值,此時(shí)點(diǎn)P的坐標(biāo)為(2,﹣3).
∵B(3,0),C(0,﹣3),K是線段CB的中點(diǎn),∴K(,﹣),K′(﹣,﹣),∴PK′==,∴當(dāng)△PCE的面積最大時(shí),KM+PM的最小值為.
(3)設(shè)平移后的拋物線的解析式為y=(x﹣t)2﹣2(x﹣t)﹣3(t>0).
∵平移后的拋物線過(guò)點(diǎn)D(1,0),∴(1﹣t)2﹣2(1﹣t)﹣3=0,解得:t1=2,t2=﹣2(舍去),∴平移后拋物線的解析式為y=(x﹣2)2﹣2(x﹣2)﹣3=x2﹣6x+5=(x﹣3)2﹣4,∴F(3,﹣4).
∵C(0,﹣3),E(4,5),點(diǎn)G是線段CE的中點(diǎn),∴G(2,1).
設(shè)點(diǎn)Q的坐標(biāo)為(3,a),則GF==,FQ=|a+4|,GQ==.
∵△FGQ為等腰三角形,∴分三種情況.
①當(dāng)GF=FQ時(shí),有=|a+4|,解得:a1=﹣4,a2=﹣﹣4,∴點(diǎn)Q(3,﹣4)或(3,﹣﹣4);
②當(dāng)GF=GQ時(shí),有=,解得:a3=6,a4=﹣4(舍去),∴點(diǎn)Q(3,6);
③當(dāng)FQ=GQ時(shí),有|a+4|=,解得:a=﹣,∴點(diǎn)Q(3,﹣).
綜上所述:在新拋物線y′的對(duì)稱(chēng)軸上,存在一點(diǎn)Q,使得△FGQ為等腰三角形,點(diǎn)Q的坐標(biāo)為(3,)或(3,)或(3,6)或(3,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】沿海城市A接到臺(tái)風(fēng)警報(bào),在該市正南方向130km的B處有一臺(tái)風(fēng)中心,沿BC方向以15km/h的速度向D移動(dòng),已知城市A到BC的距離AD=50km,那么臺(tái)風(fēng)中心經(jīng)過(guò)多長(zhǎng)時(shí)間從B點(diǎn)移到D點(diǎn)?如果在距臺(tái)風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺(tái)風(fēng)的破壞的危險(xiǎn),正在D點(diǎn)休閑的游人在接到臺(tái)風(fēng)警報(bào)后的幾小時(shí)內(nèi)撤離才可脫離危險(xiǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1且為實(shí)數(shù)),其中正確的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,且A、C、B在同一直線上,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°,其中正確結(jié)論有( )
A.①②③④⑤B.①②④⑤C.①②③⑤D.①②⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,4),則點(diǎn)B4的坐標(biāo)為_____,點(diǎn)B2017的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)門(mén)市銷(xiāo)售兩種商品,甲種商品每件售價(jià)為300元,乙種商品每件售價(jià)為80元.新年來(lái)臨之際,該門(mén)市為促銷(xiāo)制定了兩種優(yōu)惠方案:
方案一:買(mǎi)一件甲種商品就贈(zèng)送一件乙種商品;
方案二:按購(gòu)買(mǎi)金額打八折付款.
某公司為獎(jiǎng)勵(lì)員工,購(gòu)買(mǎi)了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫(xiě)出優(yōu)惠方案一購(gòu)買(mǎi)費(fèi)用y1(元)、優(yōu)惠方案二購(gòu)買(mǎi)費(fèi)用y2(元)與所買(mǎi)乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購(gòu)買(mǎi)了m件甲種商品,其余按方案二的優(yōu)惠辦法購(gòu)買(mǎi).請(qǐng)你寫(xiě)出總費(fèi)用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說(shuō)明怎樣購(gòu)買(mǎi)最實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三角形有一條邊上的高等于這條邊的一半,那么我們把這個(gè)三角形叫做半高三角形.已知直角三角形是半高三角形,且斜邊,則它的周長(zhǎng)等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,∠D=∠C,添加下列哪個(gè)條件后,仍不能使△ADO≌△BCO的是( 。
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com