【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)D.設(shè)BD=x,tan∠ACB=y,則( )

A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21

【答案】B
【解析】解:

過A作AQ⊥BC于Q,過E作EM⊥BC于M,連接DE,
∵BE的垂直平分線交BC于D,BD=x,
∴BD=DE=x,
∵AB=AC,BC=12,tan∠ACB=y,
= =y,BQ=CQ=6,
∴AQ=6y,
∵AQ⊥BC,EM⊥BC,
∴AQ∥EM,
∵E為AC中點(diǎn),
∴CM=QM= CQ=3,
∴EM=3y,
∴DM=12﹣3﹣x=9﹣x,
在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2 ,
即2x﹣y2=9,
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識(shí),掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等,以及對(duì)等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)四邊形ABCD是邊長(zhǎng)為1的正方形,以對(duì)角線AC為邊作第二個(gè)正方形ACEF、再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去….若正方形ABCD的邊長(zhǎng)記為a1 , 按上述方法所作的正方形的邊長(zhǎng)依次為a2 , a3 , a4 , …,an , 則an=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的對(duì)角線相交于點(diǎn)O,M、N分別是OD、OC上異于O、C、D的點(diǎn).
(1)請(qǐng)你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個(gè)添加條件(或添加一個(gè)你認(rèn)為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是
(2)添加條件后,請(qǐng)證明四邊形ABNM是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)O作一條直線分別交AB,CD于點(diǎn)E,F(xiàn).

(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小區(qū)的一個(gè)健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說明理由;
(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè) , ,請(qǐng)?zhí)剿? , , 滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是(
A.
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)數(shù)字游戲:將1,2,3,4,5,6,7,8,9這九個(gè)數(shù)字分別填在如圖所示的九個(gè)空格中,要求每一行從左到右的數(shù)字逐漸增大,每一列從上到下的數(shù)字也逐漸增大.當(dāng)數(shù)字3和4固定在圖中所示的位置時(shí),x代表的數(shù)字是 , 此時(shí)按游戲規(guī)則填寫空格,所有可能出現(xiàn)的結(jié)果共有種.

查看答案和解析>>

同步練習(xí)冊(cè)答案