精英家教網 > 初中數學 > 題目詳情

關于x的一元二次方程kx2-(2k+1)x+k=0有兩個實數根,則k的取值范圍是


  1. A.
    k>-數學公式
  2. B.
    k≥-數學公式
  3. C.
    k<-數學公式且k≠0
  4. D.
    k≥-數學公式且k≠0
D
分析:因為方程有實數根,則根的判別式△≥0,且二次項系數不為零,由此得到關于k的不等式,解不等式就可以求出k的取值范圍.
解答:∵△=b2-4ac
=(2k+1)2-4k2≥0,
解得k≥-,
且二次項系數k≠0,
∴k≥-且k≠0.
故選D.
點評:根據一元二次方程的根的判別式來確定k的取值范圍,還要注意二次項系數不為零.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•北侖區(qū)二模)若關于x的一元二次方程a(x+m)2=3兩個實根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點橫坐標分別是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•沈陽)若關于x的一元二次方程x2+4x+a=0有兩個不相等的實數根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•蘭州一模)若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數a,b,c有如下關系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數關系定理,請利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個實數根.
(1)是否存在實數m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時方程的兩根.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•瀘州)若關于x的一元二次方程kx2-2x-1=0有兩個不相等的實數根,則實數k的取值范圍是( 。

查看答案和解析>>

同步練習冊答案