【題目】如圖,點(diǎn)A(-10,0),B(-6,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB,∠CDA=90°.點(diǎn)P從點(diǎn)Q(8,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)C的坐標(biāo).
(2)當(dāng)∠BCP=15°時(shí),求t的值.
(3)以PC為直徑作圓,當(dāng)該圓與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.
【答案】(1)C(0,6);(2)8+2或8+6;(3)2或8或17.1
【解析】
試題分析:(1)根據(jù)∠BOC=90°,∠CBO=45°得出∠BCO=∠CBO=45°,從而得出點(diǎn)C的坐標(biāo);(2)根據(jù)當(dāng)點(diǎn)P在點(diǎn)B右側(cè)和當(dāng)點(diǎn)P在點(diǎn)B左側(cè)兩種情況分別進(jìn)行計(jì)算,得出答案;(3)根據(jù)圓與BC相切、圓與CD相切和圓與AD相切三種情況分別進(jìn)行計(jì)算,得出答案.
試題解析:(1)∵∠BOC=90°,∠CBO=45°,∴∠BCO=∠CBO=45°,
∵B(-6,0),∴OC=OB=6,∴C(0,6);
(2)①當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時(shí),∵∠BCO=45°,∠BCP=15°,∴∠POC=30°,
∴OP=2 ∴t1=8+2
②當(dāng)點(diǎn)P在點(diǎn)B左側(cè)時(shí),∵∠BCO=45°,∠BCP=15°,∴∠POC=60°,
∴OP=6 ∴t2=8+6
綜上所述:t的值為8+2或8+6.
(3)由題意知,若該圓與四邊形ABCD的邊相切,有以下三種情況:
①當(dāng)該圓與BC相切于點(diǎn)C時(shí),有∠BCP=90°, 從而∠OCP=45°,得到OP=6,此時(shí)PQ=2,∴t=2;
②當(dāng)該圓與CD相切于點(diǎn)C時(shí),有PC⊥CD,即點(diǎn)P與點(diǎn)O重合, 此時(shí)PQ=8,∴t=8;
③當(dāng)該圓與AD相切時(shí),設(shè)P(8-t,0),設(shè)圓心為M,則M(,3),半徑r=
作MH⊥AD于點(diǎn)H,則MH=-(-10)=14-,
當(dāng)MH2=r2時(shí),得(14-)2=()2+32,解得t=17.1
∴t的值為2或8或17.1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+n(k≠0)與二次函數(shù)y2=ax2+bx+c(a≠0)的圖象相交于A(﹣1,5)、B(9,2)兩點(diǎn),則關(guān)于x的不等式kx+n≥ax2+bx+c的解集為( 。
A. ﹣1≤x≤9 B. ﹣1≤x<9 C. ﹣1<x≤9 D. x≤﹣1或x≥9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.
(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長(zhǎng)線上時(shí),且滿足BE=DF,上述結(jié)論仍然成立嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分10分)如圖,直徑為AB的⊙O交的兩條直角邊BC、CD于點(diǎn)E、F,且,連接BF.
(1)求證CD為⊙O的切線;(2)當(dāng)CF=1且∠D=30°時(shí),求AD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖像可能是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-x2+(m-1)x+m與y軸交于點(diǎn)(0,3).
(1)求出m的值,并畫出這條拋物線;
(2)求拋物線與x軸的交點(diǎn)和頂點(diǎn)坐標(biāo);
(3)當(dāng)x取什么值時(shí),拋物線在x軸上方?
(4)當(dāng)x取什么值時(shí),y的值隨x的增大而減小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)120元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑,如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用,設(shè)每個(gè)房間定價(jià)增加10x元(x為整數(shù)).
(1)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式.
(2)設(shè)賓館每天的利潤為W元,當(dāng)每間房?jī)r(jià)定價(jià)為多少元時(shí),賓館每天所獲利潤最大,最大利潤是多少?
(3)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費(fèi)用沒有超過600元,③每個(gè)房間剛好住滿2人.問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com