已知:AB∥DE,AB=DE,BE=CF;
求證:(1)△ABC≌△DEF;(2)∠D=∠EOC.

證明:(1)∵AB∥DE,
∴∠ABC=∠DEF.
∵BE=CF,
∴BE+EC=CF+EC.
∴BC=EF.
又∵AB=DE,
∴△ABC≌△DEF(SAS).

(2)∵△ABC≌△DEF,
∴∠ACB=∠DFE.
∴AC∥DF.
∴∠D=∠EOC.
分析:(1)根據(jù)AB∥DE得出∠ABC=∠DEF,再根據(jù)BE=CF得到BC=EF,從而利用SAS證明△ABC≌△DEF.
(2)根據(jù)△ABC≌△DEF得對(duì)應(yīng)角相等:∠ACB=∠DFE,再根據(jù)同位角相等兩直線平行得:AC∥DF,故得出∠D=∠EOC.
點(diǎn)評(píng):本題考查了全等三角形的判定及其性質(zhì)、平行線的判定及其性質(zhì),做題時(shí)要結(jié)合圖形選擇方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、已知:AB=DE,AF=CD,∠A=∠D,EF=BC,試說(shuō)明:BF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

31、如圖,已知:AB=DE,BE=CF,要使△ABC≌△DEF需附加一個(gè)什么條件?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,已知:AB=DE且AB∥DE,BE=CF.求證:(1)∠A=∠D;(2)AC∥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知:AB∥DE,AB=DE,BE=CF;
求證:(1)△ABC≌△DEF;(2)∠D=∠EOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:AB∥DE,∠1=∠2,直線AE與DC平行嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹